
A lawn in the garden is in the shape of the equilateral triangle. If the length of one of the sides of an equilateral triangle is $75m$. Find the fencing rate at $Rs$$12$ per $meter$.
Answer
505.5k+ views
Hint: Find out the perimeter of the garden which is in the form of an equilateral triangle and the perimeter of the triangle is equal to the sum of all the sides and hence you can easily find the rate of fencing.
Complete step-by-step answer:
Here, according to the question, it is given that a lawn in the garden is in the shape of the equilateral triangle and the length of one of the sides of an equilateral triangle is $75m$. It is also given that the rate of fencing $1meter$ is $Rs$$12$. So we have to find the amount required for fencing around the triangle.
Let us draw the diagram of the garden and the lawn.
Here $ABCD$ is the garden and $PQR$ is the lawn in the form of the equilateral triangle.
We have to do the fencing around this lawn or the triangle.
First of all we should know what fencing means. Fencing means to cover the lawn from all three sides.
So we can find the perimeter of the lawn and then find the rate of fencing as the rate of fencing $1m$ is given.
Perimeter$ = $ sum of all sides of the triangle.
Here as it is given that it is an equilateral triangle and therefore all sides will be equal.
So, the perimeter of the triangle$ = $ sum of all sides.
$ = 75 + 75 + 75 = 225m$
The fencing rate is at $Rs$$12$ per $meter$.
Therefore total cost of fencing$ = 12 \times 225 = 2700$
Hence the total cost is $Rs2700$.
Note: If we are asked the cost of fencing is $Rs12$ per $meter$. Here its unit is $meter$and the perimeter is also in $meter$. If it is asked $Rs12$ per $mete{r^2}$then we have to find the area as its area’s unit. So you can use this trick to remove this confusion.
Complete step-by-step answer:
Here, according to the question, it is given that a lawn in the garden is in the shape of the equilateral triangle and the length of one of the sides of an equilateral triangle is $75m$. It is also given that the rate of fencing $1meter$ is $Rs$$12$. So we have to find the amount required for fencing around the triangle.
Let us draw the diagram of the garden and the lawn.

Here $ABCD$ is the garden and $PQR$ is the lawn in the form of the equilateral triangle.
We have to do the fencing around this lawn or the triangle.
First of all we should know what fencing means. Fencing means to cover the lawn from all three sides.
So we can find the perimeter of the lawn and then find the rate of fencing as the rate of fencing $1m$ is given.
Perimeter$ = $ sum of all sides of the triangle.
Here as it is given that it is an equilateral triangle and therefore all sides will be equal.
So, the perimeter of the triangle$ = $ sum of all sides.
$ = 75 + 75 + 75 = 225m$
The fencing rate is at $Rs$$12$ per $meter$.
Therefore total cost of fencing$ = 12 \times 225 = 2700$
Hence the total cost is $Rs2700$.
Note: If we are asked the cost of fencing is $Rs12$ per $meter$. Here its unit is $meter$and the perimeter is also in $meter$. If it is asked $Rs12$ per $mete{r^2}$then we have to find the area as its area’s unit. So you can use this trick to remove this confusion.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

How many crores make 10 million class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

Find HCF and LCM of 120 and 144 by using Fundamental class 7 maths CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE
