
A is a $3\times 3$ non-singular matrix with \[A{{A}^{1}}={{A}^{1}}A\text{ and B=}{{\text{A}}^{-1}}{{A}^{1}}\] then $B{{B}^{1}}$ is equal to
\[\begin{align}
& A.\text{ I+B} \\
& \text{B}\text{. I} \\
& \text{C}\text{. }{{\text{B}}^{-1}} \\
& \text{D}\text{. }{{\left( {{B}^{-1}} \right)}^{1}} \\
\end{align}\]
Answer
591.9k+ views
Hint: We know that ${{A}^{-1}}$ is inverse of matrix and ${{A}^{1}}$ is transpose of matrix. To solve this, first substitute the value of $\text{B=}{{\text{A}}^{-1}}{{A}^{1}}$ in $B{{B}^{1}}$ then use the property given in the question as $A{{A}^{1}}={{A}^{1}}A$ Try to take \[A{{A}^{-1}}\text{ and }\left( {{A}^{1}} \right){{\left( {{A}^{1}} \right)}^{-1}}\] together and use the fact that \[A{{A}^{-1}}=I\] to get result.
Complete step-by-step answer:
Transpose of a matrix is obtained by reversing rows and columns of a matrix ${{A}^{1}}$ is a transpose of a matrix A.
Non-singular matrix is a matrix whose determinant is non zero. So, we have A is a $3\times 3$ matrix whose determinant is non zero.
Given that \[A{{A}^{1}}={{A}^{1}}A\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Consider $B{{B}^{1}}$
Given that \[\text{B=}{{\text{A}}^{-1}}{{A}^{1}}\]
Substituting $\text{B=}{{\text{A}}^{-1}}{{A}^{1}}\text{ in B}{{\text{B}}^{\text{1}}}$ we get:
\[B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}} \right){{\left( {{A}^{-1}}{{A}^{1}} \right)}^{1}}\]
Using the fact that ${{\left( PQ \right)}^{1}}={{Q}^{1}}{{P}^{1}}$ in above we get:
\[\begin{align}
& B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}} \right)\left( {{\left( {{A}^{1}} \right)}^{1}}{{\left( {{A}^{-1}} \right)}^{1}} \right) \\
& \Rightarrow B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}} \right)\left( {{\left( {{A}^{1}} \right)}^{1}}{{\left( {{A}^{-1}} \right)}^{1}} \right) \\
\end{align}\]
Using the fact that ${{\left( {{A}^{1}} \right)}^{1}}=A$ in above we get:
\[\Rightarrow B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}} \right)\left( A{{\left( {{A}^{-1}} \right)}^{1}} \right)\]
Using the fact that ${{\left( {{A}^{-1}} \right)}^{1}}={{\left( {{A}^{1}} \right)}^{-1}}$ in above we get:
\[\Rightarrow B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}} \right)\left( A{{\left( {{A}^{1}} \right)}^{-1}} \right)\]
Opening the bracket we get:
\[\Rightarrow B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}}A{{\left( {{A}^{1}} \right)}^{-1}} \right)\]
Using equation (i) we have $A{{A}^{1}}={{A}^{1}}A$ in above we get:
\[\Rightarrow B{{B}^{1}}=\left( {{A}^{-1}}A{{A}^{1}}{{\left( {{A}^{1}} \right)}^{-1}} \right)\]
Now, using the fact that $A{{A}^{-1}}=I$
Where ${{A}^{-1}}$ is the inverse of a matrix, we get:
\[\begin{align}
& B{{B}^{-1}}=\left( I\left( {{A}^{1}} \right){{\left( {{A}^{1}} \right)}^{-1}} \right) \\
& \text{as }A{{A}^{-1}}=I\text{ then }\left( {{B}^{1}} \right){{\left( {{B}^{1}} \right)}^{-1}}=I \\
& \Rightarrow B{{B}^{-1}}=\left( I-I \right) \\
& \Rightarrow B{{B}^{-1}}=I \\
\end{align}\]
So, the value of \[B{{B}^{-1}}=I\]
So, the correct answer is “Option B”.
Note: The possibility of error in this question can be at the point where, we have to take the value of ${{A}^{1}}$ and inverse of ${{A}^{1}}$ here, \[{{\left( {{A}^{1}} \right)}^{-1}}{{A}^{1}}=I\text{ as }B{{B}^{-1}}=I\] where ${{B}^{-1}}$ is inverse of B.
Also, remember the matrix multiplication is not commutative, that is $AB\ne BA$ unless stated. So, we cannot use $A{{A}^{1}}={{A}^{1}}A$ unless stated in the question.
Complete step-by-step answer:
Transpose of a matrix is obtained by reversing rows and columns of a matrix ${{A}^{1}}$ is a transpose of a matrix A.
Non-singular matrix is a matrix whose determinant is non zero. So, we have A is a $3\times 3$ matrix whose determinant is non zero.
Given that \[A{{A}^{1}}={{A}^{1}}A\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Consider $B{{B}^{1}}$
Given that \[\text{B=}{{\text{A}}^{-1}}{{A}^{1}}\]
Substituting $\text{B=}{{\text{A}}^{-1}}{{A}^{1}}\text{ in B}{{\text{B}}^{\text{1}}}$ we get:
\[B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}} \right){{\left( {{A}^{-1}}{{A}^{1}} \right)}^{1}}\]
Using the fact that ${{\left( PQ \right)}^{1}}={{Q}^{1}}{{P}^{1}}$ in above we get:
\[\begin{align}
& B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}} \right)\left( {{\left( {{A}^{1}} \right)}^{1}}{{\left( {{A}^{-1}} \right)}^{1}} \right) \\
& \Rightarrow B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}} \right)\left( {{\left( {{A}^{1}} \right)}^{1}}{{\left( {{A}^{-1}} \right)}^{1}} \right) \\
\end{align}\]
Using the fact that ${{\left( {{A}^{1}} \right)}^{1}}=A$ in above we get:
\[\Rightarrow B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}} \right)\left( A{{\left( {{A}^{-1}} \right)}^{1}} \right)\]
Using the fact that ${{\left( {{A}^{-1}} \right)}^{1}}={{\left( {{A}^{1}} \right)}^{-1}}$ in above we get:
\[\Rightarrow B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}} \right)\left( A{{\left( {{A}^{1}} \right)}^{-1}} \right)\]
Opening the bracket we get:
\[\Rightarrow B{{B}^{1}}=\left( {{A}^{-1}}{{A}^{1}}A{{\left( {{A}^{1}} \right)}^{-1}} \right)\]
Using equation (i) we have $A{{A}^{1}}={{A}^{1}}A$ in above we get:
\[\Rightarrow B{{B}^{1}}=\left( {{A}^{-1}}A{{A}^{1}}{{\left( {{A}^{1}} \right)}^{-1}} \right)\]
Now, using the fact that $A{{A}^{-1}}=I$
Where ${{A}^{-1}}$ is the inverse of a matrix, we get:
\[\begin{align}
& B{{B}^{-1}}=\left( I\left( {{A}^{1}} \right){{\left( {{A}^{1}} \right)}^{-1}} \right) \\
& \text{as }A{{A}^{-1}}=I\text{ then }\left( {{B}^{1}} \right){{\left( {{B}^{1}} \right)}^{-1}}=I \\
& \Rightarrow B{{B}^{-1}}=\left( I-I \right) \\
& \Rightarrow B{{B}^{-1}}=I \\
\end{align}\]
So, the value of \[B{{B}^{-1}}=I\]
So, the correct answer is “Option B”.
Note: The possibility of error in this question can be at the point where, we have to take the value of ${{A}^{1}}$ and inverse of ${{A}^{1}}$ here, \[{{\left( {{A}^{1}} \right)}^{-1}}{{A}^{1}}=I\text{ as }B{{B}^{-1}}=I\] where ${{B}^{-1}}$ is inverse of B.
Also, remember the matrix multiplication is not commutative, that is $AB\ne BA$ unless stated. So, we cannot use $A{{A}^{1}}={{A}^{1}}A$ unless stated in the question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

