
A general equation of second degree \[a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0\] represents a pair of straight lines if
1. \[{{h}^{2}}=2ab\]
2. \[{{h}^{2}}>2ab\]
3. \[\left| \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right|=0\]
4. None of these
Answer
413.1k+ views
Hint: At first we take the general equation that is \[S=a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0\] which represents a straight line for that we have to consider two line equation \[{{l}_{1}}x\text{ }+\text{ }{{m}_{1}}y\text{ }+~{{n}_{1~}}=~0\text{ }\]and\[{{l}_{2}}x\text{ }+~{{m}_{2}}y\text{ }+~{{n}_{2~}}=~0\]. Therefore, \[({{l}_{1}}x\text{ }+\text{ }{{m}_{1}}y\text{ }+~{{n}_{1~}})({{l}_{2}}x\text{ }+~{{m}_{2}}y\text{ }+~n)=0\] and simplify further in this problem.
Complete step by step answer:
Suppose \[S=0\] represents pair of straight line but there are two line of equation are:
\[{{l}_{1}}x\text{ }+\text{ }{{m}_{1}}y\text{ }+~{{n}_{1~}}=0---(1)\]
\[{{l}_{2}}x\text{ }+~{{m}_{2}}y\text{ }+~{{n}_{2~}}=~0---(2)\]
It represents a pair of straight line that means
\[S=({{l}_{1}}x\text{ }+\text{ }{{m}_{1}}y\text{ }+~{{n}_{1~}})({{l}_{2}}x\text{ }+~{{m}_{2}}y\text{ }+~n_2)\]
By simplifying this above equation we get:
\[S={{l}_{1}}{{l}_{2}}{{x}^{2}}\text{+}{{l}_{1}}~{{m}_{2}}xy+{{l}_{1}}{{n}_{2}}x\text{+}{{l}_{2}}{{m}_{1}}xy+{{m}_{1}}{{m}_{2}}{{y}^{2}}\text{+}{{m}_{1}}{{n}_{2}}y\text{+}{{l}_{2}}{{n}_{1~}}x+{{m}_{2}}{{n}_{1~}}y\text{ }+~{{n}_{2}}{{n}_{1~}}\]
By rearranging the term we get:
\[S={{l}_{1}}{{l}_{2}}{{x}^{2}}+{{m}_{1}}{{m}_{2}}{{y}^{2}}+{{l}_{1}}~{{m}_{2}}xy+{{l}_{2}}{{m}_{1}}xy+{{l}_{1}}{{n}_{2}}x+{{l}_{2}}{{n}_{1~}}x+{{m}_{1}}{{n}_{2}}y+{{m}_{2}}{{n}_{1~}}y+~{{n}_{2}}{{n}_{1~}}\]
By solving further we get:
\[S={{l}_{1}}{{l}_{2}}{{x}^{2}}+{{m}_{1}}{{m}_{2}}{{y}^{2}}+({{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}})xy+({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}})x+({{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}})y+~{{n}_{2}}{{n}_{1~}}--(3)\]
By comparing the general equation that is \[S=a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c\] with equation \[(3)\]
We get,
\[a={{l}_{1}}{{l}_{2}},\,\,b={{l}_{1}}{{l}_{2}},\,\,2h={{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}},\,\,c={{n}_{2}}{{n}_{1~}},\,\,2g={{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}},\,\,2f={{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}}\]
Now, \[8fgh\] can be written as \[(2f)(2g)(2h)\]
\[\therefore 8fgh=(2f)(2g)(2h)\]
Substitute the value of h, g and f we get;
\[\begin{align}
& 8fgh=({{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}})({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}})({{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}}) \\
& \\
\end{align}\]
After simplifying the bracket we get:
\[8fgh={{l}_{1}}{{l}_{2}}({{m}_{1}}^{2}{{n}_{2}}^{2}+{{m}_{2}}^{2}{{n}_{1~}}^{2})+{{m}_{1}}{{m}_{2}}({{l}_{1}}^{2}{{n}_{2}}^{2}+{{l}_{2}}^{2}{{n}_{1~}}^{2})+{{n}_{1~}}{{n}_{2~}}({{l}_{1}}^{2}~{{m}_{2}}^{2}+{{l}_{2}}^{2}{{m}_{1}}^{2})+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}}\]
By arranging the term we get:
\[8fgh={{l}_{1}}{{l}_{2}}\left[ ({{m}_{1}}^{2}{{n}_{2}}^{2}+{{m}_{2}}^{2}{{n}_{1~}}^{2}+2{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}})-2{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+{{m}_{1}}{{m}_{2}}\left[ ({{l}_{1}}^{2}{{n}_{2}}^{2}+{{l}_{2}}^{2}{{n}_{1~}}^{2}+2{{l}_{1}}{{l}_{2}}{{n}_{1~}}{{n}_{2~}})-2{{l}_{1}}{{l}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+{{n}_{1~}}{{n}_{2~}}\left[ ({{l}_{1}}^{2}~{{m}_{2}}^{2}+{{l}_{2}}^{2}{{m}_{1}}^{2}+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}})-2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}} \right]+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}}\]
As we know the value of \[a,\,\,b,\,\,c\,\,\]substitute in these equation we get:
And apply the formula for \[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[8fgh=a\left[ {{({{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}})}^{2}}-2{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+b\left[ {{({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}})}^{2}}-2{{l}_{1}}{{l}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+c\left[ {{({{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}})}^{2}}-2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}} \right]+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}}\]
By substituting the value of \[h,\,\,f,\,\,g\,\,\]in this above equation:
\[8fgh=a(4{{f}^{2}}-2bc)+b(4{{g}^{2}}-2ca)+c(4{{h}^{2}}-2ab)+2abc\]
By simplifying this we get:
\[8fgh=4(a{{f}^{2}}+b{{g}^{2}}+c{{h}^{2}}-abc)\]
Divide by 4 on both sides we get:
\[2fgh=a{{f}^{2}}+b{{g}^{2}}+c{{h}^{2}}-abc\]
By rearranging the term we get:
\[2fgh=a{{f}^{2}}+b{{g}^{2}}+c{{h}^{2}}-abc\] or \[abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0\]
If we notice this above equation then it is a determinant of the matrix which is generally it is represented as \[\Delta \] that is the above equation becomes \[\Delta =0\]
This is the required condition for \[S=a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0\] represents a straight line
\[\Delta =0\] can also be written as:
\[\left| \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right|=0\]
Because \[\Delta =\left| \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right|=abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0\]
So, the correct answer is “Option 3”.
Note: In this particular problem we have to remember that \[S=0\] only for the equation which represents a pair of straight lines. And its determinant will be 0. So, while simplifying the brackets, don't make silly mistakes. So the above solution is referred for such types of problems.
Complete step by step answer:
Suppose \[S=0\] represents pair of straight line but there are two line of equation are:
\[{{l}_{1}}x\text{ }+\text{ }{{m}_{1}}y\text{ }+~{{n}_{1~}}=0---(1)\]
\[{{l}_{2}}x\text{ }+~{{m}_{2}}y\text{ }+~{{n}_{2~}}=~0---(2)\]
It represents a pair of straight line that means
\[S=({{l}_{1}}x\text{ }+\text{ }{{m}_{1}}y\text{ }+~{{n}_{1~}})({{l}_{2}}x\text{ }+~{{m}_{2}}y\text{ }+~n_2)\]
By simplifying this above equation we get:
\[S={{l}_{1}}{{l}_{2}}{{x}^{2}}\text{+}{{l}_{1}}~{{m}_{2}}xy+{{l}_{1}}{{n}_{2}}x\text{+}{{l}_{2}}{{m}_{1}}xy+{{m}_{1}}{{m}_{2}}{{y}^{2}}\text{+}{{m}_{1}}{{n}_{2}}y\text{+}{{l}_{2}}{{n}_{1~}}x+{{m}_{2}}{{n}_{1~}}y\text{ }+~{{n}_{2}}{{n}_{1~}}\]
By rearranging the term we get:
\[S={{l}_{1}}{{l}_{2}}{{x}^{2}}+{{m}_{1}}{{m}_{2}}{{y}^{2}}+{{l}_{1}}~{{m}_{2}}xy+{{l}_{2}}{{m}_{1}}xy+{{l}_{1}}{{n}_{2}}x+{{l}_{2}}{{n}_{1~}}x+{{m}_{1}}{{n}_{2}}y+{{m}_{2}}{{n}_{1~}}y+~{{n}_{2}}{{n}_{1~}}\]
By solving further we get:
\[S={{l}_{1}}{{l}_{2}}{{x}^{2}}+{{m}_{1}}{{m}_{2}}{{y}^{2}}+({{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}})xy+({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}})x+({{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}})y+~{{n}_{2}}{{n}_{1~}}--(3)\]
By comparing the general equation that is \[S=a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c\] with equation \[(3)\]
We get,
\[a={{l}_{1}}{{l}_{2}},\,\,b={{l}_{1}}{{l}_{2}},\,\,2h={{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}},\,\,c={{n}_{2}}{{n}_{1~}},\,\,2g={{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}},\,\,2f={{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}}\]
Now, \[8fgh\] can be written as \[(2f)(2g)(2h)\]
\[\therefore 8fgh=(2f)(2g)(2h)\]
Substitute the value of h, g and f we get;
\[\begin{align}
& 8fgh=({{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}})({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}})({{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}}) \\
& \\
\end{align}\]
After simplifying the bracket we get:
\[8fgh={{l}_{1}}{{l}_{2}}({{m}_{1}}^{2}{{n}_{2}}^{2}+{{m}_{2}}^{2}{{n}_{1~}}^{2})+{{m}_{1}}{{m}_{2}}({{l}_{1}}^{2}{{n}_{2}}^{2}+{{l}_{2}}^{2}{{n}_{1~}}^{2})+{{n}_{1~}}{{n}_{2~}}({{l}_{1}}^{2}~{{m}_{2}}^{2}+{{l}_{2}}^{2}{{m}_{1}}^{2})+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}}\]
By arranging the term we get:
\[8fgh={{l}_{1}}{{l}_{2}}\left[ ({{m}_{1}}^{2}{{n}_{2}}^{2}+{{m}_{2}}^{2}{{n}_{1~}}^{2}+2{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}})-2{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+{{m}_{1}}{{m}_{2}}\left[ ({{l}_{1}}^{2}{{n}_{2}}^{2}+{{l}_{2}}^{2}{{n}_{1~}}^{2}+2{{l}_{1}}{{l}_{2}}{{n}_{1~}}{{n}_{2~}})-2{{l}_{1}}{{l}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+{{n}_{1~}}{{n}_{2~}}\left[ ({{l}_{1}}^{2}~{{m}_{2}}^{2}+{{l}_{2}}^{2}{{m}_{1}}^{2}+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}})-2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}} \right]+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}}\]
As we know the value of \[a,\,\,b,\,\,c\,\,\]substitute in these equation we get:
And apply the formula for \[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[8fgh=a\left[ {{({{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}})}^{2}}-2{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+b\left[ {{({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}})}^{2}}-2{{l}_{1}}{{l}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+c\left[ {{({{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}})}^{2}}-2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}} \right]+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}}\]
By substituting the value of \[h,\,\,f,\,\,g\,\,\]in this above equation:
\[8fgh=a(4{{f}^{2}}-2bc)+b(4{{g}^{2}}-2ca)+c(4{{h}^{2}}-2ab)+2abc\]
By simplifying this we get:
\[8fgh=4(a{{f}^{2}}+b{{g}^{2}}+c{{h}^{2}}-abc)\]
Divide by 4 on both sides we get:
\[2fgh=a{{f}^{2}}+b{{g}^{2}}+c{{h}^{2}}-abc\]
By rearranging the term we get:
\[2fgh=a{{f}^{2}}+b{{g}^{2}}+c{{h}^{2}}-abc\] or \[abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0\]
If we notice this above equation then it is a determinant of the matrix which is generally it is represented as \[\Delta \] that is the above equation becomes \[\Delta =0\]
This is the required condition for \[S=a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0\] represents a straight line
\[\Delta =0\] can also be written as:
\[\left| \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right|=0\]
Because \[\Delta =\left| \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right|=abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0\]
So, the correct answer is “Option 3”.
Note: In this particular problem we have to remember that \[S=0\] only for the equation which represents a pair of straight lines. And its determinant will be 0. So, while simplifying the brackets, don't make silly mistakes. So the above solution is referred for such types of problems.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
