
A gas mixture of \[3{\text{ }}liters\] of propane and butane on complete combustion at \[{25^0}C\] produce \[10{\text{ }}liters\] of \[C{O_2}\] initial composition of the propane and butane in the gas mixture is:
A. \[66.67\% ,{\text{ }}33.33\% \;\]
B. \[33.33\% ,{\text{ }}66.67\% \]
C. \[50\% ,{\text{ }}50\% \]
D. \[60\% ,{\text{ }}40\% \]
Answer
554.4k+ views
Hint: Combustion reaction to the type of reaction that causes a flame. Combustion is a chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, high-temperature exothermic (heat releasing) redox (oxygen adding) which creates oxidized, often gaseous products in a mixture called smoke.
Complete answer:
As per given gas mixture of \[3{\text{ }}liters\] of propane and butane on complete combustion, we know the formula of propane and Butane is \[{C_3}{H_8}{\text{ }}and{\text{ }}{C_4}{H_{10}}\] respectively. Now the question is after combustion of \[C{O_2}\] formed \[10{\text{ }}litres.\]
First, we can make the reaction -
The reactions of propane with oxygen: \[{C_3}{H_{8\;}} + {\text{ }}{O_{2\;{\text{ }}}} - \;C{O_2}\; + {\text{ }}{H_2}O\;\;\;\;\;\;\;\;\;\;\]
Balancing the equation \[{C_3}{H_{8\;}} + {\text{ }}5{O_{2\;}}\; \to \;3C{O_{2\;}} + 4{H_2}O\; - - - - - - - - - \left( 1 \right)\]
the reactions of butane with oxygen: \[{C_4}{H_{10}}\; + {\text{ }}{O_2}\;\;\; \to \;\;{H_2}O{\text{ }} + \;C{O_2}\]
Balancing the equation\[\;{C_4}{H_{10}}\; + {\text{ }}\left( {\dfrac{{13}}{2}} \right){\text{ }}{O_2} \to 5{H_2}O{\text{ }} + {\text{ }}4C{O_{2\;}}\;\;\;\; - - - - - - - - - \left( 2 \right)\]
Let suppose \[{C_3}{H_8} = X\, moles\] and \[{C_4}{H_{10}} = Y\, moles\]
As per reaction of propane \[{C_3}{H_{8\;}} + {\text{ }}5{O_{2\;}}\; \to \;3C{O_{2\;}} + 4{H_2}O\; - - - - - - - - - \left( 1 \right)\]
so one mole of propane produces =\[\;3\] moles of\[C{O_2}\] .
\[\therefore X\] Moles of propane produce = \[3X\] moles of \[C{O_2}\]
As per reaction of butane \[\;{C_4}{H_{10}}\; + {\text{ }}\left( {\dfrac{{13}}{2}} \right){\text{ }}{O_2} \to 5{H_2}O{\text{ }} + {\text{ }}4C{O_{2\;}}\;\;\;\; - - - - - - - - - \left( 2 \right)\]
So one mole of Butane produces =\[4\] moles of\[C{O_2}\]
\[\therefore Y\;\] moles of Butane produce = \[4Y\] moles of \[C{O_2}\]
Now \[X + Y{\text{ }} = 3\;\; - - - - - - - \left( 3 \right)\] Given,
So, \[3X{\text{ }} + 4Y{\text{ }} = {\text{ }}10\; - - - - - - - \left( 4 \right)\] \[\;\therefore \] Given Volume of \[C{O_2}\; = 10{\text{ }}litres\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\]
Solving equation (3) and (4)
\[X + Y{\text{ }} = 3\;\; - - - - - - - \left( 3 \right)\]
\[\Rightarrow X = {\text{ }}3 - Y\]
From equation \[3X{\text{ }} + 4Y{\text{ }} = {\text{ }}10\; - - - - - - - \left( 4 \right)\]
Putting the value of \[X\] in equation\[\left( 4 \right)\]
\[\Rightarrow 3\left( {3 - Y} \right) + 4Y = {\text{ }}10\]
By solving, \[Y = 1,\] now putting the value of \[Y\] in equation \[\left( 3 \right)\] we get, \[X = {\text{ }}2\]
So, the composition of propane in gas mixture is \[2\,L\] and butane is \[1\,L.\]
$\therefore$Volume of propane = \[2\,L.\]
$\therefore$Volume of butane = \[1\,L.\]
Percentage of propane = \[\dfrac{{Volume{\text{ }}of{\text{ }}propane}}{{total{\text{ }}gas{\text{ }}mixture{\text{ }}volume}} \times 100\] = \[\dfrac{2}{{1 + 2}} \times 100 = 66.67\% \]
Percentage of butane =\[{\text{ }}\dfrac{{Volume{\text{ }}of{\text{ }}butane}}{{total{\text{ }}gas{\text{ }}mixture{\text{ }}volume}} \times 100\] = \[\dfrac{1}{{1 + 2}} \times 100 = 33.33\% \]
So the option (A) is correct
Note:
Combustion reaction is an exothermic reaction in the form of heat and light that releases energy. This releases the full amount of energy from the fuel being reacted when a gas undergoes complete combustion.
Complete answer:
As per given gas mixture of \[3{\text{ }}liters\] of propane and butane on complete combustion, we know the formula of propane and Butane is \[{C_3}{H_8}{\text{ }}and{\text{ }}{C_4}{H_{10}}\] respectively. Now the question is after combustion of \[C{O_2}\] formed \[10{\text{ }}litres.\]
First, we can make the reaction -
The reactions of propane with oxygen: \[{C_3}{H_{8\;}} + {\text{ }}{O_{2\;{\text{ }}}} - \;C{O_2}\; + {\text{ }}{H_2}O\;\;\;\;\;\;\;\;\;\;\]
Balancing the equation \[{C_3}{H_{8\;}} + {\text{ }}5{O_{2\;}}\; \to \;3C{O_{2\;}} + 4{H_2}O\; - - - - - - - - - \left( 1 \right)\]
the reactions of butane with oxygen: \[{C_4}{H_{10}}\; + {\text{ }}{O_2}\;\;\; \to \;\;{H_2}O{\text{ }} + \;C{O_2}\]
Balancing the equation\[\;{C_4}{H_{10}}\; + {\text{ }}\left( {\dfrac{{13}}{2}} \right){\text{ }}{O_2} \to 5{H_2}O{\text{ }} + {\text{ }}4C{O_{2\;}}\;\;\;\; - - - - - - - - - \left( 2 \right)\]
Let suppose \[{C_3}{H_8} = X\, moles\] and \[{C_4}{H_{10}} = Y\, moles\]
As per reaction of propane \[{C_3}{H_{8\;}} + {\text{ }}5{O_{2\;}}\; \to \;3C{O_{2\;}} + 4{H_2}O\; - - - - - - - - - \left( 1 \right)\]
so one mole of propane produces =\[\;3\] moles of\[C{O_2}\] .
\[\therefore X\] Moles of propane produce = \[3X\] moles of \[C{O_2}\]
As per reaction of butane \[\;{C_4}{H_{10}}\; + {\text{ }}\left( {\dfrac{{13}}{2}} \right){\text{ }}{O_2} \to 5{H_2}O{\text{ }} + {\text{ }}4C{O_{2\;}}\;\;\;\; - - - - - - - - - \left( 2 \right)\]
So one mole of Butane produces =\[4\] moles of\[C{O_2}\]
\[\therefore Y\;\] moles of Butane produce = \[4Y\] moles of \[C{O_2}\]
Now \[X + Y{\text{ }} = 3\;\; - - - - - - - \left( 3 \right)\] Given,
So, \[3X{\text{ }} + 4Y{\text{ }} = {\text{ }}10\; - - - - - - - \left( 4 \right)\] \[\;\therefore \] Given Volume of \[C{O_2}\; = 10{\text{ }}litres\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\]
Solving equation (3) and (4)
\[X + Y{\text{ }} = 3\;\; - - - - - - - \left( 3 \right)\]
\[\Rightarrow X = {\text{ }}3 - Y\]
From equation \[3X{\text{ }} + 4Y{\text{ }} = {\text{ }}10\; - - - - - - - \left( 4 \right)\]
Putting the value of \[X\] in equation\[\left( 4 \right)\]
\[\Rightarrow 3\left( {3 - Y} \right) + 4Y = {\text{ }}10\]
By solving, \[Y = 1,\] now putting the value of \[Y\] in equation \[\left( 3 \right)\] we get, \[X = {\text{ }}2\]
So, the composition of propane in gas mixture is \[2\,L\] and butane is \[1\,L.\]
$\therefore$Volume of propane = \[2\,L.\]
$\therefore$Volume of butane = \[1\,L.\]
Percentage of propane = \[\dfrac{{Volume{\text{ }}of{\text{ }}propane}}{{total{\text{ }}gas{\text{ }}mixture{\text{ }}volume}} \times 100\] = \[\dfrac{2}{{1 + 2}} \times 100 = 66.67\% \]
Percentage of butane =\[{\text{ }}\dfrac{{Volume{\text{ }}of{\text{ }}butane}}{{total{\text{ }}gas{\text{ }}mixture{\text{ }}volume}} \times 100\] = \[\dfrac{1}{{1 + 2}} \times 100 = 33.33\% \]
So the option (A) is correct
Note:
Combustion reaction is an exothermic reaction in the form of heat and light that releases energy. This releases the full amount of energy from the fuel being reacted when a gas undergoes complete combustion.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

