Answer
Verified
463.8k+ views
Hint:Remember you don’t have to arrange the passengers who are already sitting or have a preference. Arrange the remaining passengers using combinations in the remaining seats in the lower or upper deck.
Complete step-by-step answer:
Let’s first try to analyse the question properly. In the given problem, there are total $20$ passengers that are to be arranged in $20$ seats of a double-decker that has $7$ seats in the lower deck and $13$ in the upper deck. But we also have a condition that, $5$ passenger should be arranged only in the lower deck and $8$ passengers should be arranged only in the upper deck.
So basically, $5$ passengers in $7$ seats of the lower deck are already arranged then $8$ passengers in $13$ seats of the upper deck are already arranged. And then remaining $7$ passengers in $7$ remaining seats.
Now we can start arranging passengers using combinations step by step. But for that, you need to know the idea of combination. A combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter.
$ \Rightarrow $ If $'n'$ is the number of things to choose from, and we choose $'r'$ of them, no repetition, the order doesn't matter; then we can represent then as: ${}^n{C_r} = \left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Out of $7$ remaining passengers, we have to arrange them in remaining $2$ seats in the lower deck and in $5$ seats in the upper deck.
$ \Rightarrow $ We can arrange remaining passengers in the upper deck then after those remaining two passengers will be arranged in remaining two seats by itself $ \Rightarrow {}^7{C_5} = \dfrac{{7!}}{{5!\left( {7 - 5} \right)!}}$
Therefore, the number of required ways$ = \dfrac{{7!}}{{5!\left( {7 - 5} \right)!}} = \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7}}{{1 \times 2 \times 3 \times 4 \times 5 \times 1 \times 2}} = \dfrac{{6 \times 7}}{{1 \times 2}} = 21$
Hence, the number of ways to arrange the passengers as required is $21$.
Note:Try to visualize the given condition properly before starting a solution. An alternative approach can be taken by arranging the remaining passengers in the lower deck first, i.e. by using${}^7{C_2}$. But you will find the same answer since ${}^n{C_r} = {}^n{C_{n - r}}$
Complete step-by-step answer:
Let’s first try to analyse the question properly. In the given problem, there are total $20$ passengers that are to be arranged in $20$ seats of a double-decker that has $7$ seats in the lower deck and $13$ in the upper deck. But we also have a condition that, $5$ passenger should be arranged only in the lower deck and $8$ passengers should be arranged only in the upper deck.
So basically, $5$ passengers in $7$ seats of the lower deck are already arranged then $8$ passengers in $13$ seats of the upper deck are already arranged. And then remaining $7$ passengers in $7$ remaining seats.
Now we can start arranging passengers using combinations step by step. But for that, you need to know the idea of combination. A combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter.
$ \Rightarrow $ If $'n'$ is the number of things to choose from, and we choose $'r'$ of them, no repetition, the order doesn't matter; then we can represent then as: ${}^n{C_r} = \left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Out of $7$ remaining passengers, we have to arrange them in remaining $2$ seats in the lower deck and in $5$ seats in the upper deck.
$ \Rightarrow $ We can arrange remaining passengers in the upper deck then after those remaining two passengers will be arranged in remaining two seats by itself $ \Rightarrow {}^7{C_5} = \dfrac{{7!}}{{5!\left( {7 - 5} \right)!}}$
Therefore, the number of required ways$ = \dfrac{{7!}}{{5!\left( {7 - 5} \right)!}} = \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7}}{{1 \times 2 \times 3 \times 4 \times 5 \times 1 \times 2}} = \dfrac{{6 \times 7}}{{1 \times 2}} = 21$
Hence, the number of ways to arrange the passengers as required is $21$.
Note:Try to visualize the given condition properly before starting a solution. An alternative approach can be taken by arranging the remaining passengers in the lower deck first, i.e. by using${}^7{C_2}$. But you will find the same answer since ${}^n{C_r} = {}^n{C_{n - r}}$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE