
A diameter of the circle ${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}$=2x+6y−6 is a chord of another circle with centre (2,1). The radius of this circle C is (in units).
Answer
516.9k+ views
Hint: To solve this question, we use the basic theory of circles. As given circle having equation: ${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}$=2x+6y−6. First, we convert the given equation into the standard form of the circle equation. And then calculate its centre and radius so that we calculate radius of the new circle by using this as mentioned in the diagram.
Complete step-by-step answer:
As we know,
Chords length = 2$\sqrt {{{\text{r}}^{\text{2}}}{\text{ - }}{{\text{d}}^{\text{2}}}} $equation of circle is ${\left( {{\text{x - h}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{y - k}}} \right)^{\text{2}}}{\text{ = }}{{\text{r}}^{\text{2}}}$
Given, equation of circle:
${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}$-2x-6y+6=0
$\left( {{{\text{x}}^{\text{2}}}{\text{ - 2x + 1}}} \right){\text{ + }}\left( {{{\text{y}}^{\text{2}}}{\text{ - 6y + 9}}} \right){\text{ - 1 - 10 + 4 = 0}}$
${\left( {{\text{x - 1}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{y - 3}}} \right)^{\text{2}}}{\text{ = 4}}$
So, c= (1, 3) and r=2
As given, diameter of the circle ${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}$=2x+6y−6 is a chord of another circle with centre (2,1).
So, in this case point ${\text{O'}}$ is (1, 3) and length O’A=2
Now, we calculate length OO’
OO’=$\sqrt {{{{\text{(2 - 1)}}}^{\text{2}}}{\text{ + (1 - 3}}{{\text{)}}^{\text{2}}}} $= $\sqrt 5 $
Using Pythagoras theorem,
OA=$\sqrt {{{{\text{(OO')}}}^{\text{2}}}{\text{ + (O'A}}{{\text{)}}^{\text{2}}}} $
= $\sqrt {{\text{(}}\sqrt {{\text{5}}{{\text{)}}^{\text{2}}}} {\text{ + (2}}{{\text{)}}^{\text{2}}}} $
=$\sqrt 9 $
OA(r)=3
Therefore,
The radius of this circle C is 3 (in units).
Note- if we want to construct a circle equation with centre (h,k)and the radius a then the equation of circle is as, ${\left( {{\text{x - h}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{y - k}}} \right)^{\text{2}}}{\text{ = }}{{\text{r}}^{\text{2}}}$.which is called the standard form for the equation of a circle. Where r is the radius of the given circle.
Complete step-by-step answer:
As we know,
Chords length = 2$\sqrt {{{\text{r}}^{\text{2}}}{\text{ - }}{{\text{d}}^{\text{2}}}} $equation of circle is ${\left( {{\text{x - h}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{y - k}}} \right)^{\text{2}}}{\text{ = }}{{\text{r}}^{\text{2}}}$
Given, equation of circle:
${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}$-2x-6y+6=0
$\left( {{{\text{x}}^{\text{2}}}{\text{ - 2x + 1}}} \right){\text{ + }}\left( {{{\text{y}}^{\text{2}}}{\text{ - 6y + 9}}} \right){\text{ - 1 - 10 + 4 = 0}}$
${\left( {{\text{x - 1}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{y - 3}}} \right)^{\text{2}}}{\text{ = 4}}$
So, c= (1, 3) and r=2
As given, diameter of the circle ${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}$=2x+6y−6 is a chord of another circle with centre (2,1).
So, in this case point ${\text{O'}}$ is (1, 3) and length O’A=2
Now, we calculate length OO’
OO’=$\sqrt {{{{\text{(2 - 1)}}}^{\text{2}}}{\text{ + (1 - 3}}{{\text{)}}^{\text{2}}}} $= $\sqrt 5 $
Using Pythagoras theorem,
OA=$\sqrt {{{{\text{(OO')}}}^{\text{2}}}{\text{ + (O'A}}{{\text{)}}^{\text{2}}}} $
= $\sqrt {{\text{(}}\sqrt {{\text{5}}{{\text{)}}^{\text{2}}}} {\text{ + (2}}{{\text{)}}^{\text{2}}}} $
=$\sqrt 9 $
OA(r)=3
Therefore,
The radius of this circle C is 3 (in units).
Note- if we want to construct a circle equation with centre (h,k)and the radius a then the equation of circle is as, ${\left( {{\text{x - h}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{y - k}}} \right)^{\text{2}}}{\text{ = }}{{\text{r}}^{\text{2}}}$.which is called the standard form for the equation of a circle. Where r is the radius of the given circle.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
