
A clock was set correct at 12 o’clock. It loses 10 minutes per hour. What will be the angle between the hour and the minute hand of the clock after one hour?
A. ${{60}^{\circ }}$
B. ${{90}^{\circ }}$
C. ${{105}^{\circ }}$
D. ${{75}^{\circ }}$
Answer
553.2k+ views
Hint: In this question we have been given that the clock loses 10 minutes per hour and we have to find the angle between the hour hand and the minute hand of the clock after 1 hour. From the given data, we will conclude that it will show 50 minutes for the next 60 minutes and hence the time will be 12:50 instead of 1 o’clock. After that, we will find the angle covered by the minute hand in 1 hour and then subtract it from ${{360}^{\circ }}$. This will give us our required angle.
Complete step-by-step answer:
Now, we have been given that the clock loses 10 minutes per hour. This means that the minute hand will move for $60-10=50$ minutes in one hour instead of 60 minutes and then $50-10=40$ minutes in the next hour and so on.
Thus, after 1 hour, the minute hand will show 50 minutes. So the time will be 12:50 instead of 1 o’clock.
Thus, the clock will look some like this:
So, in 1 hour, the angle covered by the minute hand is given as:
$\begin{align}
& \dfrac{50}{60}\times {{360}^{\circ }} \\
& \Rightarrow {{300}^{\circ }} \\
\end{align}$
Thus, the angle between the minute hand and the hour hand will be ${{360}^{\circ }}$ minus the angle covered by the minute hand in 1 hour.
Thus, the required angle is given as:
$\begin{align}
& {{360}^{\circ }}-{{300}^{\circ }} \\
& \Rightarrow {{60}^{\circ }} \\
\end{align}$
Thus, the required angle is ${{60}^{\circ }}$
So, the correct answer is “Option A”.
Note: To find out the angle swept by the minute hand in ‘x’ minutes, we use the formula:
$\theta =\dfrac{x}{60}\times {{360}^{\circ }}$
This is derived as:
We know that in one hour there are 60 minutes and the minute hand in the clock completes one revolution in that time.
Thus the angle swept by the minute hand in 1 hour is:
$\dfrac{{{360}^{\circ }}}{60}$
Thus, the angle swept by the minute hand is given as:
$\begin{align}
& x\times \dfrac{{{360}^{\circ }}}{60} \\
& \Rightarrow \dfrac{x}{60}\times {{360}^{\circ }} \\
\end{align}$
Complete step-by-step answer:
Now, we have been given that the clock loses 10 minutes per hour. This means that the minute hand will move for $60-10=50$ minutes in one hour instead of 60 minutes and then $50-10=40$ minutes in the next hour and so on.
Thus, after 1 hour, the minute hand will show 50 minutes. So the time will be 12:50 instead of 1 o’clock.
Thus, the clock will look some like this:
So, in 1 hour, the angle covered by the minute hand is given as:
$\begin{align}
& \dfrac{50}{60}\times {{360}^{\circ }} \\
& \Rightarrow {{300}^{\circ }} \\
\end{align}$
Thus, the angle between the minute hand and the hour hand will be ${{360}^{\circ }}$ minus the angle covered by the minute hand in 1 hour.
Thus, the required angle is given as:
$\begin{align}
& {{360}^{\circ }}-{{300}^{\circ }} \\
& \Rightarrow {{60}^{\circ }} \\
\end{align}$
Thus, the required angle is ${{60}^{\circ }}$
So, the correct answer is “Option A”.
Note: To find out the angle swept by the minute hand in ‘x’ minutes, we use the formula:
$\theta =\dfrac{x}{60}\times {{360}^{\circ }}$
This is derived as:
We know that in one hour there are 60 minutes and the minute hand in the clock completes one revolution in that time.
Thus the angle swept by the minute hand in 1 hour is:
$\dfrac{{{360}^{\circ }}}{60}$
Thus, the angle swept by the minute hand is given as:
$\begin{align}
& x\times \dfrac{{{360}^{\circ }}}{60} \\
& \Rightarrow \dfrac{x}{60}\times {{360}^{\circ }} \\
\end{align}$
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

