
A circle is inscribed in a regular hexagon of side $2\sqrt 3 cm$ . Find the circumference of the inscribed circle.
Answer
519.9k+ views
Hint:To solve this problem we should know about concept of circumscribed as well as basic trigonometry
Circumscribed: Circumscribed of a polygon is a circle that passes through all the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
A trigonometric property, $\cot \theta = \dfrac{{base}}{{perpendicular}}$
Complete step by step answer:
As given in question we will draw diagram,
It is obvious from figure that
Let, there are two triangle AOB and COB,
In, $\Delta $ AOB and $\Delta $ BOC. We have,
$AO = CO$ (radius of circle)
And $OB$ is common if hypotenuse is equal.
So, by RHS criteria both triangles are congruent.
Hence, $\angle AOB = \angle BOC$
And \[\angle AOC = {60^ \circ }\] (circle are divided in six parts)
So, $\angle AOB = \angle BOC = {30^ \circ }$
In, $\Delta $ AOB:
$\cot \,{30^ \circ } = \dfrac{{base}}{{perpendicular}}$
As, length of the side of the hexagon is $2\sqrt 3 cm$ . so, $AB = \sqrt 3 cm$ .
So,
$\dfrac{{Radius\,of\,the\,circle}}{{half\,the\,side\,of\,hexgon}} = \cot \,{30^ \circ }$
$ \Rightarrow \dfrac{{Radius\,of\,the\,circle}}{{\dfrac{1}{2} \times 2\sqrt 3 }} = \sqrt 3 $
(As $\cot \,{30^ \circ } = \sqrt 3 $ )
$ \Rightarrow Radius\,of\,the\,circle(r) = 3cm$
So circumference of the inscribed circle $ = 2\pi r = 2\pi \times 3 = 6\pi $
Note: properties of regular hexagon:
It has six sides and six angles and the measurements of all angles are equal.
The total number of diagonals in a regular hexagon is nine.
The sum of all interior angles is equal to ${720^ \circ }$ .
Circumscribed: Circumscribed of a polygon is a circle that passes through all the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
A trigonometric property, $\cot \theta = \dfrac{{base}}{{perpendicular}}$
Complete step by step answer:
As given in question we will draw diagram,
It is obvious from figure that
Let, there are two triangle AOB and COB,
In, $\Delta $ AOB and $\Delta $ BOC. We have,
$AO = CO$ (radius of circle)
And $OB$ is common if hypotenuse is equal.
So, by RHS criteria both triangles are congruent.
Hence, $\angle AOB = \angle BOC$
And \[\angle AOC = {60^ \circ }\] (circle are divided in six parts)
So, $\angle AOB = \angle BOC = {30^ \circ }$
In, $\Delta $ AOB:
$\cot \,{30^ \circ } = \dfrac{{base}}{{perpendicular}}$
As, length of the side of the hexagon is $2\sqrt 3 cm$ . so, $AB = \sqrt 3 cm$ .
So,
$\dfrac{{Radius\,of\,the\,circle}}{{half\,the\,side\,of\,hexgon}} = \cot \,{30^ \circ }$
$ \Rightarrow \dfrac{{Radius\,of\,the\,circle}}{{\dfrac{1}{2} \times 2\sqrt 3 }} = \sqrt 3 $
(As $\cot \,{30^ \circ } = \sqrt 3 $ )
$ \Rightarrow Radius\,of\,the\,circle(r) = 3cm$
So circumference of the inscribed circle $ = 2\pi r = 2\pi \times 3 = 6\pi $
Note: properties of regular hexagon:
It has six sides and six angles and the measurements of all angles are equal.
The total number of diagonals in a regular hexagon is nine.
The sum of all interior angles is equal to ${720^ \circ }$ .
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

