
A chord of a circle is $12cm$ in length and its distance from the center is $8cm$. Find the length of the chord of the same circle which is at a distance of $6cm$ from the center.
A. $30cm$
B. $24cm$
C. $16cm$
D. $18cm$
Answer
575.1k+ views
Hint: First we will make the diagram of the circle according to the question. Here is a diagram of the circle; we have to use Pythagoras theorem i.e. in a given triangle which has three sides$a,b,c$ where $b$base is, $a$ is perpendicular and $c$ is the hypotenuse. So according to the Pythagoras theorem ${c^2} = {a^2} + {b^2}$ to find the radius of the circle. Thus we get the length of the second chord and easily find the length of the diameter.
Complete step by step answer:
As per the question, draw the diagram:
A chord of a circle is $12cm$in length and its distance from the center is $8cm$.
Assume that the center of the circle is $O, AB$ is the one chord of the circle, whose midpoint is$M$
AMO and $BMO$ are both a right-angled triangle.
Now
$AM$ $ = \dfrac{{12}}{2} = 6cm$ \[\]
$AM$ $ = 8cm$
So r is the radius of the circle.
Now
\[
AO = \sqrt {A{M^2} + O{M^2}} \\
\Rightarrow \sqrt {{6^2} + {8^2}} \\
\Rightarrow \sqrt {36 + 64} \\
\Rightarrow \sqrt {100} \\
\Rightarrow 10cm \\
\]
Now the chord CD is 6 cm from the center of circle O.
Let F be the midpoint of CD. Then angle CFO and DFO are both right-angled triangles.
$OF$ =$6cm$
$CO = DO$ $10cm$
So,
$CF = DF$
So
$CF = $
$
\sqrt {C{O^2} - O{F^2}} \\
\Rightarrow \sqrt {{{10}^2} - {6^2}} \\
\Rightarrow \sqrt {100 - 36} \\
\Rightarrow \sqrt {64} \\
\Rightarrow 8cm \\
$
Now $D$ =$2 \times 8 = 16cm$
Hence the correct answer in option $C$.
Note: First of all we have to remember the definition of a circle, all the parameters used in the circle. We have to remember about Pythagoras theorem. In the given question we have to find the diameter of the circle, for this first we have to calculate the radius then multiply it by $2$ as given in the solution hint. Thus we get the correct answer.
Complete step by step answer:
As per the question, draw the diagram:
A chord of a circle is $12cm$in length and its distance from the center is $8cm$.
Assume that the center of the circle is $O, AB$ is the one chord of the circle, whose midpoint is$M$
AMO and $BMO$ are both a right-angled triangle.
Now
$AM$ $ = \dfrac{{12}}{2} = 6cm$ \[\]
$AM$ $ = 8cm$
So r is the radius of the circle.
Now
\[
AO = \sqrt {A{M^2} + O{M^2}} \\
\Rightarrow \sqrt {{6^2} + {8^2}} \\
\Rightarrow \sqrt {36 + 64} \\
\Rightarrow \sqrt {100} \\
\Rightarrow 10cm \\
\]
Now the chord CD is 6 cm from the center of circle O.
Let F be the midpoint of CD. Then angle CFO and DFO are both right-angled triangles.
$OF$ =$6cm$
$CO = DO$ $10cm$
So,
$CF = DF$
So
$CF = $
$
\sqrt {C{O^2} - O{F^2}} \\
\Rightarrow \sqrt {{{10}^2} - {6^2}} \\
\Rightarrow \sqrt {100 - 36} \\
\Rightarrow \sqrt {64} \\
\Rightarrow 8cm \\
$
Now $D$ =$2 \times 8 = 16cm$
Hence the correct answer in option $C$.
Note: First of all we have to remember the definition of a circle, all the parameters used in the circle. We have to remember about Pythagoras theorem. In the given question we have to find the diameter of the circle, for this first we have to calculate the radius then multiply it by $2$ as given in the solution hint. Thus we get the correct answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

