
A binary operation * on the set $ \left\{ {0,1,2,3,4,5} \right\} $ defined as,
$ a*b = \left[ {\begin{array}{*{20}{c}}
{a + b;}&{it\;a + b < 6} \\
{a + b - 6;}&{it\;a + b > 6}
\end{array}} \right] $
Show that zero is the identity element of this operational each element ‘a’ of the set is invertible with 6 – 0 being the inverse of ‘a’
Answer
590.1k+ views
Hint: -At first we have to define the a*b for the different elements of the set containing $ \left\{ {0,1,2,3,4,5} \right\} $ with satisfying this condition
$ a*b = \left[ {\begin{array}{*{20}{c}}
{a + b;}&{it\;a + b < 6} \\
{a + b - 6;}&{it\;a + b > 6}
\end{array}} \right] $
Complete step-by-step answer:
R= Row
C= Coloumn
$ \begin{gathered}
0 + 0 = 0 < 6 \\
0 + 1 = 1 < 6 \\
0 + 2 = 2 < 6 \\
0 + 3 = 3 < 6 \\
0 + 4 = 4 < 6 \\
0 + 5 = 5 < 6 \\
0 + 6 = 6 = 6 \\
\end{gathered} $
So it is 6 -6 =0 according to the condition $ \therefore a + b = a + b - 6 \geqslant 6. $ we have to do for the rest of the operations in the same manner.
Identity element
Properties, it is identical with $ \ell $
Then $ a*\ell = a, $
So for finding the identity element we have to apply this property
For, 0, $ \begin{gathered}
0 + \ell = 0 \\
\;\;\;\;\;\ell = 0, \\
\end{gathered} $
For 1, $ \begin{gathered}
1 + \ell = 1 \\
\;\;\;\ell = 1 - 1 = 0 \\
\end{gathered} $
For 2, $ \begin{gathered}
2 + \ell = 2 \\
\;\;\;\;\;\ell = 0 \\
\end{gathered} $
For 3, $ \begin{gathered}
3 + \ell = 3 \\
\;\;\;\;\ell = 0 \\
\end{gathered} $
For 4, $ \begin{gathered}
4 + \ell = 4 \\
\;\;\;\;\;\ell = 0 \\
\end{gathered} $
For 5, $ \begin{gathered}
5 + \ell = 5 \\
\;\;\;\;\ell = 0 \\
\end{gathered} $
So for all the element Identity elements is same and it is = 0.
Inverse element
Properties, If is inverse of a,
Then, $ a\;*\;I = \ell $ $ \left[ {\ell = Identity\;element} \right] $
For 0, $ \begin{gathered}
0 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 0, \\
\end{gathered} $
For 1, $ \begin{gathered}
1 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 1, \\
\end{gathered} $
For2, $ \begin{gathered}
2 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 2, \\
\end{gathered} $
For 3, $ \begin{gathered}
3 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 3, \\
\end{gathered} $
For 4, $ \begin{gathered}
4 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 4, \\
\end{gathered} $
For 5, $ \begin{gathered}
5 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 5, \\
\end{gathered} $
So for each element, the inverse element exists and it is in the form of $ 6 - a $
And for the inverse of each element exists that’s why the operation is invertible with 6 –a being the inverse of ‘a’.
Note: We have to care about the finding of inverse elements, if for any element inverse does not exist operation can’t be Invertible at all. Therefore the inverse must exist for all the elements else the function cannot be invertible.
$ a*b = \left[ {\begin{array}{*{20}{c}}
{a + b;}&{it\;a + b < 6} \\
{a + b - 6;}&{it\;a + b > 6}
\end{array}} \right] $
Complete step-by-step answer:
| $ {C_1} $ | $ {C_2} $ | $ {C _3} $ | $ {C_4} $ | $ {C_5} $ | $ {C_6} $ | |
| 0 | 1 | 2 | 3 | 4 | 5 | |
| $ {R_1} \to 0 $ | 0 | 1 | 2 | 3 | 4 | 5 |
| $ {R_2} \to 1 $ | 1 | 2 | 3 | 4 | 5 | 0 |
| $ {R_3} \to 2 $ | 2 | 3 | 4 | 5 | 0 | 1 |
| $ {R_4} \to 3 $ | 3 | 4 | 5 | 0 | 1 | 2 |
| $ {R_5} \to 4 $ | 4 | 5 | 0 | 1 | 2 | 3 |
| $ {R_6} \to 5 $ | 5 | 0 | 1 | 2 | 3 | 4 |
R= Row
C= Coloumn
$ \begin{gathered}
0 + 0 = 0 < 6 \\
0 + 1 = 1 < 6 \\
0 + 2 = 2 < 6 \\
0 + 3 = 3 < 6 \\
0 + 4 = 4 < 6 \\
0 + 5 = 5 < 6 \\
0 + 6 = 6 = 6 \\
\end{gathered} $
So it is 6 -6 =0 according to the condition $ \therefore a + b = a + b - 6 \geqslant 6. $ we have to do for the rest of the operations in the same manner.
Identity element
Properties, it is identical with $ \ell $
Then $ a*\ell = a, $
So for finding the identity element we have to apply this property
For, 0, $ \begin{gathered}
0 + \ell = 0 \\
\;\;\;\;\;\ell = 0, \\
\end{gathered} $
For 1, $ \begin{gathered}
1 + \ell = 1 \\
\;\;\;\ell = 1 - 1 = 0 \\
\end{gathered} $
For 2, $ \begin{gathered}
2 + \ell = 2 \\
\;\;\;\;\;\ell = 0 \\
\end{gathered} $
For 3, $ \begin{gathered}
3 + \ell = 3 \\
\;\;\;\;\ell = 0 \\
\end{gathered} $
For 4, $ \begin{gathered}
4 + \ell = 4 \\
\;\;\;\;\;\ell = 0 \\
\end{gathered} $
For 5, $ \begin{gathered}
5 + \ell = 5 \\
\;\;\;\;\ell = 0 \\
\end{gathered} $
So for all the element Identity elements is same and it is = 0.
Inverse element
Properties, If is inverse of a,
Then, $ a\;*\;I = \ell $ $ \left[ {\ell = Identity\;element} \right] $
For 0, $ \begin{gathered}
0 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 0, \\
\end{gathered} $
For 1, $ \begin{gathered}
1 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 1, \\
\end{gathered} $
For2, $ \begin{gathered}
2 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 2, \\
\end{gathered} $
For 3, $ \begin{gathered}
3 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 3, \\
\end{gathered} $
For 4, $ \begin{gathered}
4 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 4, \\
\end{gathered} $
For 5, $ \begin{gathered}
5 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 5, \\
\end{gathered} $
So for each element, the inverse element exists and it is in the form of $ 6 - a $
And for the inverse of each element exists that’s why the operation is invertible with 6 –a being the inverse of ‘a’.
Note: We have to care about the finding of inverse elements, if for any element inverse does not exist operation can’t be Invertible at all. Therefore the inverse must exist for all the elements else the function cannot be invertible.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

