
A binary operation * on the set $ \left\{ {0,1,2,3,4,5} \right\} $ defined as,
$ a*b = \left[ {\begin{array}{*{20}{c}}
{a + b;}&{it\;a + b < 6} \\
{a + b - 6;}&{it\;a + b > 6}
\end{array}} \right] $
Show that zero is the identity element of this operational each element ‘a’ of the set is invertible with 6 – 0 being the inverse of ‘a’
Answer
509.7k+ views
Hint: -At first we have to define the a*b for the different elements of the set containing $ \left\{ {0,1,2,3,4,5} \right\} $ with satisfying this condition
$ a*b = \left[ {\begin{array}{*{20}{c}}
{a + b;}&{it\;a + b < 6} \\
{a + b - 6;}&{it\;a + b > 6}
\end{array}} \right] $
Complete step-by-step answer:
R= Row
C= Coloumn
$ \begin{gathered}
0 + 0 = 0 < 6 \\
0 + 1 = 1 < 6 \\
0 + 2 = 2 < 6 \\
0 + 3 = 3 < 6 \\
0 + 4 = 4 < 6 \\
0 + 5 = 5 < 6 \\
0 + 6 = 6 = 6 \\
\end{gathered} $
So it is 6 -6 =0 according to the condition $ \therefore a + b = a + b - 6 \geqslant 6. $ we have to do for the rest of the operations in the same manner.
Identity element
Properties, it is identical with $ \ell $
Then $ a*\ell = a, $
So for finding the identity element we have to apply this property
For, 0, $ \begin{gathered}
0 + \ell = 0 \\
\;\;\;\;\;\ell = 0, \\
\end{gathered} $
For 1, $ \begin{gathered}
1 + \ell = 1 \\
\;\;\;\ell = 1 - 1 = 0 \\
\end{gathered} $
For 2, $ \begin{gathered}
2 + \ell = 2 \\
\;\;\;\;\;\ell = 0 \\
\end{gathered} $
For 3, $ \begin{gathered}
3 + \ell = 3 \\
\;\;\;\;\ell = 0 \\
\end{gathered} $
For 4, $ \begin{gathered}
4 + \ell = 4 \\
\;\;\;\;\;\ell = 0 \\
\end{gathered} $
For 5, $ \begin{gathered}
5 + \ell = 5 \\
\;\;\;\;\ell = 0 \\
\end{gathered} $
So for all the element Identity elements is same and it is = 0.
Inverse element
Properties, If is inverse of a,
Then, $ a\;*\;I = \ell $ $ \left[ {\ell = Identity\;element} \right] $
For 0, $ \begin{gathered}
0 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 0, \\
\end{gathered} $
For 1, $ \begin{gathered}
1 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 1, \\
\end{gathered} $
For2, $ \begin{gathered}
2 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 2, \\
\end{gathered} $
For 3, $ \begin{gathered}
3 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 3, \\
\end{gathered} $
For 4, $ \begin{gathered}
4 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 4, \\
\end{gathered} $
For 5, $ \begin{gathered}
5 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 5, \\
\end{gathered} $
So for each element, the inverse element exists and it is in the form of $ 6 - a $
And for the inverse of each element exists that’s why the operation is invertible with 6 –a being the inverse of ‘a’.
Note: We have to care about the finding of inverse elements, if for any element inverse does not exist operation can’t be Invertible at all. Therefore the inverse must exist for all the elements else the function cannot be invertible.
$ a*b = \left[ {\begin{array}{*{20}{c}}
{a + b;}&{it\;a + b < 6} \\
{a + b - 6;}&{it\;a + b > 6}
\end{array}} \right] $
Complete step-by-step answer:
$ {C_1} $ | $ {C_2} $ | $ {C _3} $ | $ {C_4} $ | $ {C_5} $ | $ {C_6} $ | |
0 | 1 | 2 | 3 | 4 | 5 | |
$ {R_1} \to 0 $ | 0 | 1 | 2 | 3 | 4 | 5 |
$ {R_2} \to 1 $ | 1 | 2 | 3 | 4 | 5 | 0 |
$ {R_3} \to 2 $ | 2 | 3 | 4 | 5 | 0 | 1 |
$ {R_4} \to 3 $ | 3 | 4 | 5 | 0 | 1 | 2 |
$ {R_5} \to 4 $ | 4 | 5 | 0 | 1 | 2 | 3 |
$ {R_6} \to 5 $ | 5 | 0 | 1 | 2 | 3 | 4 |
R= Row
C= Coloumn
$ \begin{gathered}
0 + 0 = 0 < 6 \\
0 + 1 = 1 < 6 \\
0 + 2 = 2 < 6 \\
0 + 3 = 3 < 6 \\
0 + 4 = 4 < 6 \\
0 + 5 = 5 < 6 \\
0 + 6 = 6 = 6 \\
\end{gathered} $
So it is 6 -6 =0 according to the condition $ \therefore a + b = a + b - 6 \geqslant 6. $ we have to do for the rest of the operations in the same manner.
Identity element
Properties, it is identical with $ \ell $
Then $ a*\ell = a, $
So for finding the identity element we have to apply this property
For, 0, $ \begin{gathered}
0 + \ell = 0 \\
\;\;\;\;\;\ell = 0, \\
\end{gathered} $
For 1, $ \begin{gathered}
1 + \ell = 1 \\
\;\;\;\ell = 1 - 1 = 0 \\
\end{gathered} $
For 2, $ \begin{gathered}
2 + \ell = 2 \\
\;\;\;\;\;\ell = 0 \\
\end{gathered} $
For 3, $ \begin{gathered}
3 + \ell = 3 \\
\;\;\;\;\ell = 0 \\
\end{gathered} $
For 4, $ \begin{gathered}
4 + \ell = 4 \\
\;\;\;\;\;\ell = 0 \\
\end{gathered} $
For 5, $ \begin{gathered}
5 + \ell = 5 \\
\;\;\;\;\ell = 0 \\
\end{gathered} $
So for all the element Identity elements is same and it is = 0.
Inverse element
Properties, If is inverse of a,
Then, $ a\;*\;I = \ell $ $ \left[ {\ell = Identity\;element} \right] $
For 0, $ \begin{gathered}
0 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 0, \\
\end{gathered} $
For 1, $ \begin{gathered}
1 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 1, \\
\end{gathered} $
For2, $ \begin{gathered}
2 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 2, \\
\end{gathered} $
For 3, $ \begin{gathered}
3 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 3, \\
\end{gathered} $
For 4, $ \begin{gathered}
4 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 4, \\
\end{gathered} $
For 5, $ \begin{gathered}
5 + I - 6 = 0 \\
\;\;\;\;\;I = 6 - 5, \\
\end{gathered} $
So for each element, the inverse element exists and it is in the form of $ 6 - a $
And for the inverse of each element exists that’s why the operation is invertible with 6 –a being the inverse of ‘a’.
Note: We have to care about the finding of inverse elements, if for any element inverse does not exist operation can’t be Invertible at all. Therefore the inverse must exist for all the elements else the function cannot be invertible.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
