
A basket contains 20 apples and 10 oranges out of which 5 apples and 3 oranges are rotten. If a person takes out one fruit at random, find the probability that the fruit is either an apple or a good fruit.
Answer
606.3k+ views
Hint: Find the number of rotten and good fruits first. Now, consider two events that is, one is the event of selecting one apple and the other is the event of selecting one good fruit. Now, find the union of these two events by using $P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)$.
Complete step-by-step answer:
Here, we are given that a basket contains 20 apples and 10 oranges out of which 5 apples and 3 oranges are rotten. If a person takes out one fruit at random, we have to find the probability of the fruit being either an apple or a good fruit. So, we are given that there are 10 oranges, out of which 3 are rotten, so 7 are good fruits. Also, there are 20 apples, out of which 5 are rotten, so 16 are good fruits.
Fruits
Let us consider them as two events. The first event is selecting an apple and the second event as selecting a good fruit, so we get,
Event A = Event of selecting one apple. Event B = Event of selecting a good fruit.
Here we have to find the probability that the chosen fruit is either an apple or a good fruit, so we need to find $P\left( A\cup B \right)$.
We know that $P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)\ldots \ldots \ldots \left( i \right)$
Now, let us find the probability of the event of selecting one apple $=P\left( A \right)$.
$P\left( A \right)=\dfrac{\text{Number of favourable event}}{\text{Number of total events}}=\dfrac{\text{Number of ways of choosing an apple}}{\text{Number of ways of choosing any fruit}}$.
We have 20 apples and the total number of fruits as 30, so, $P\left( A \right)=\dfrac{{}^{20}{{C}_{1}}}{{}^{30}{{C}_{1}}}$. Now we know the general formula is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . So, applying the formula, we get,
$\begin{align}
& P\left( A \right)=\dfrac{\dfrac{20!}{1!\times 19!}}{\dfrac{30!}{1!\times 29!}} \\
& P\left( A \right)=\dfrac{\dfrac{20\times 19!}{1!\times 19!}}{\dfrac{30\times 29!}{1!\times 29!}} \\
& P\left( A \right)=\dfrac{\dfrac{20}{1}}{\dfrac{30}{1}} \\
& P\left( A \right)=\dfrac{20}{30}\Rightarrow \dfrac{2}{3}\ldots \ldots \ldots \left( ii \right) \\
\end{align}$
Now, let us find the probability of the event of selecting a good fruit $=P\left( B \right)$.
$P\left( B \right)=\dfrac{\text{Number of ways of choosing a good fruit}}{\text{Number of ways of choosing a fruit}}$. We have total of $7+15=22$ good fruits, so we get, $P\left( B \right)=\dfrac{{}^{22}{{C}_{1}}}{{}^{30}{{C}_{1}}}$. Now applying the formula again, we get,
$\begin{align}
& P\left( B \right)=\dfrac{\dfrac{22!}{1!\times 21!}}{\dfrac{30!}{1!\times 29!}} \\
& P\left( B \right)=\dfrac{\dfrac{22\times 21!}{1!\times 21!}}{\dfrac{30\times 29!}{1!\times 29!}} \\
& P\left( B \right)=\dfrac{\dfrac{22}{1}}{\dfrac{30}{1}} \\
& P\left( B \right)=\dfrac{22}{30}\Rightarrow \dfrac{11}{15}\ldots \ldots \ldots \left( iii \right) \\
\end{align}$
Now, $A\cap B$ is the event of selecting a good apple, so, $P\left( A\cap B \right)=\dfrac{\text{Number of ways of choosing a good apple}}{\text{Number of ways of choosing a fruit}}$. We have 15 good apples, so we have $P\left( A\cap B \right)=\dfrac{{}^{15}{{C}_{1}}}{{}^{30}{{C}_{1}}}$. Now again applying the formula, we get,
$\begin{align}
& P\left( A\cap B \right)=\dfrac{\dfrac{15!}{1!\times 14!}}{\dfrac{30!}{1!\times 29!}} \\
& P\left( A\cap B \right)=\dfrac{\dfrac{15\times 14!}{1!\times 14!}}{\dfrac{30\times 29!}{1!\times 29!}} \\
& P\left( A\cap B \right)=\dfrac{\dfrac{15}{1}}{\dfrac{30}{1}} \\
& P\left( A\cap B \right)=\dfrac{15}{30}\Rightarrow \dfrac{1}{2}\ldots \ldots \ldots \left( iv \right) \\
\end{align}$
Now substituting the values of $P\left( A \right),P\left( B \right),P\left( A\cap B \right)$ in equation (i), we get, $\begin{align}
& P\left( A\cup B \right)=\dfrac{2}{3}+\dfrac{11}{15}-\dfrac{1}{2} \\
& P\left( A\cup B \right)=\dfrac{20+22-15}{30} \\
& P\left( A\cup B \right)=\dfrac{27}{30}\Rightarrow \dfrac{9}{10} \\
\end{align}$
Therefore, we get the probability that the fruit is either an apple or a good one as $\dfrac{9}{10}$.
Note: Here the students must note that in questions involving ‘either or’ we need to find the union of two events that is, $P\left( A\cup B \right)$ and for questions involving ‘and’ we need to find the intersection of the two events that is, $A\cap B$. The students must remember the formula for $P\left( A\cup B \right)$, which is, $P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)$ and find the unknown value by substituting the known values.
Complete step-by-step answer:
Here, we are given that a basket contains 20 apples and 10 oranges out of which 5 apples and 3 oranges are rotten. If a person takes out one fruit at random, we have to find the probability of the fruit being either an apple or a good fruit. So, we are given that there are 10 oranges, out of which 3 are rotten, so 7 are good fruits. Also, there are 20 apples, out of which 5 are rotten, so 16 are good fruits.
Fruits
| Fruits | 10 oranges | 20 apples | Total |
| Rotten | 3 | 5 | 8 |
| Good fruits | 7 | 15 | 22 |
Let us consider them as two events. The first event is selecting an apple and the second event as selecting a good fruit, so we get,
Event A = Event of selecting one apple. Event B = Event of selecting a good fruit.
Here we have to find the probability that the chosen fruit is either an apple or a good fruit, so we need to find $P\left( A\cup B \right)$.
We know that $P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)\ldots \ldots \ldots \left( i \right)$
Now, let us find the probability of the event of selecting one apple $=P\left( A \right)$.
$P\left( A \right)=\dfrac{\text{Number of favourable event}}{\text{Number of total events}}=\dfrac{\text{Number of ways of choosing an apple}}{\text{Number of ways of choosing any fruit}}$.
We have 20 apples and the total number of fruits as 30, so, $P\left( A \right)=\dfrac{{}^{20}{{C}_{1}}}{{}^{30}{{C}_{1}}}$. Now we know the general formula is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . So, applying the formula, we get,
$\begin{align}
& P\left( A \right)=\dfrac{\dfrac{20!}{1!\times 19!}}{\dfrac{30!}{1!\times 29!}} \\
& P\left( A \right)=\dfrac{\dfrac{20\times 19!}{1!\times 19!}}{\dfrac{30\times 29!}{1!\times 29!}} \\
& P\left( A \right)=\dfrac{\dfrac{20}{1}}{\dfrac{30}{1}} \\
& P\left( A \right)=\dfrac{20}{30}\Rightarrow \dfrac{2}{3}\ldots \ldots \ldots \left( ii \right) \\
\end{align}$
Now, let us find the probability of the event of selecting a good fruit $=P\left( B \right)$.
$P\left( B \right)=\dfrac{\text{Number of ways of choosing a good fruit}}{\text{Number of ways of choosing a fruit}}$. We have total of $7+15=22$ good fruits, so we get, $P\left( B \right)=\dfrac{{}^{22}{{C}_{1}}}{{}^{30}{{C}_{1}}}$. Now applying the formula again, we get,
$\begin{align}
& P\left( B \right)=\dfrac{\dfrac{22!}{1!\times 21!}}{\dfrac{30!}{1!\times 29!}} \\
& P\left( B \right)=\dfrac{\dfrac{22\times 21!}{1!\times 21!}}{\dfrac{30\times 29!}{1!\times 29!}} \\
& P\left( B \right)=\dfrac{\dfrac{22}{1}}{\dfrac{30}{1}} \\
& P\left( B \right)=\dfrac{22}{30}\Rightarrow \dfrac{11}{15}\ldots \ldots \ldots \left( iii \right) \\
\end{align}$
Now, $A\cap B$ is the event of selecting a good apple, so, $P\left( A\cap B \right)=\dfrac{\text{Number of ways of choosing a good apple}}{\text{Number of ways of choosing a fruit}}$. We have 15 good apples, so we have $P\left( A\cap B \right)=\dfrac{{}^{15}{{C}_{1}}}{{}^{30}{{C}_{1}}}$. Now again applying the formula, we get,
$\begin{align}
& P\left( A\cap B \right)=\dfrac{\dfrac{15!}{1!\times 14!}}{\dfrac{30!}{1!\times 29!}} \\
& P\left( A\cap B \right)=\dfrac{\dfrac{15\times 14!}{1!\times 14!}}{\dfrac{30\times 29!}{1!\times 29!}} \\
& P\left( A\cap B \right)=\dfrac{\dfrac{15}{1}}{\dfrac{30}{1}} \\
& P\left( A\cap B \right)=\dfrac{15}{30}\Rightarrow \dfrac{1}{2}\ldots \ldots \ldots \left( iv \right) \\
\end{align}$
Now substituting the values of $P\left( A \right),P\left( B \right),P\left( A\cap B \right)$ in equation (i), we get, $\begin{align}
& P\left( A\cup B \right)=\dfrac{2}{3}+\dfrac{11}{15}-\dfrac{1}{2} \\
& P\left( A\cup B \right)=\dfrac{20+22-15}{30} \\
& P\left( A\cup B \right)=\dfrac{27}{30}\Rightarrow \dfrac{9}{10} \\
\end{align}$
Therefore, we get the probability that the fruit is either an apple or a good one as $\dfrac{9}{10}$.
Note: Here the students must note that in questions involving ‘either or’ we need to find the union of two events that is, $P\left( A\cup B \right)$ and for questions involving ‘and’ we need to find the intersection of the two events that is, $A\cap B$. The students must remember the formula for $P\left( A\cup B \right)$, which is, $P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)$ and find the unknown value by substituting the known values.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

