
A bar magnet of magnetic moment $ 1.44A{m^2} $ is placed horizontally with the north pole pointing towards north. If the horizontal component of the earth's magnetic field is $ 18\mu T $ , then the neutral point is a distance (from the magnet) equal to
(A) 10 cm south as well as north
(B) 20 cm east as well as west
(C) $ 10{\left( 2 \right)^{\dfrac{1}{3}}} $ cm east as well as west
(D) 20 cm south as well as north
Answer
558k+ views
Hint : The neutral point lies in the plane bisecting the dipole. By computing the value of the magnetic field and then relating it to the magnetic moment we can find the value of the neutral point from the magnet.
Formula Used: The formulae used in the solution are given here.
$\Rightarrow \overrightarrow B = \dfrac{{{\mu _0}M}}{{4\pi {d^3}}} $ where $ {\mu _0} $ is permeability of free space $ \left( {4\pi \times {{10}^{ - 7}}} \right)Tm{A^{ - 1}} $ , $ B $ is the Magnetic Field, $ M $ is the magnetic moment and $ d $ is the distance of separation.
Complete step by step answer
As we all know, a magnet has two poles, i.e., North and South.
A magnetic field is one that describes the magnetic influence on moving electric charges. It can be defined as a vector field in the vicinity of a magnet, electric current, or changing electric field, in which a charged particle is under the influence of magnetic forces. Magnetic fields force moving electrically charged particles in a circular or helical path.
Magnetic fields such as that of Earth cause magnetic compass needles and other permanent magnets to line up in the direction of the field.
Magnetic moment can be defined as the magnetic strength and orientation of a magnet or other object that produces a magnetic field.
It is known that, for a magnetic dipole with its pole pointing to the north, the neutral point in the broadsides in position.
We know that, $ \overrightarrow B = \dfrac{{{\mu _0}M}}{{4\pi {d^3}}} $ where $ {\mu _0} $ is permeability of free space $ \left( {4\pi \times {{10}^{ - 7}}} \right)Tm{A^{ - 1}} $ , $ B $ is the Magnetic Field, $ M $ is the magnetic moment and $ d $ is the distance of separation.
It is given that, $ \overrightarrow B = 18\mu T $ and $ {\mu _0}M = 1.44 \times {10^{ - 7}}A{m^2} $
Substituting these values in the equation,
$\Rightarrow \dfrac{{1.44 \times {{10}^{ - 7}}}}{{4\pi {d^3}}} = 18 \times {10^{ - 6}} $
To find the neutral position, we have to find the value of $ d $ .
Simplifying the equation we get,
$\Rightarrow \dfrac{{1.44 \times {{10}^{ - 7}}}}{{18 \times {{10}^{ - 6}} \times 4\pi }} = {d^3} $
On taking cube roots on both sides we get,
$ \Rightarrow {\left[ {\dfrac{{1.44 \times {{10}^{ - 7}}}}{{18 \times {{10}^{ - 6}} \times 4\pi }}} \right]^{\dfrac{1}{3}}} = d $
Thus, calculating the value of $ d $ , we find
$\Rightarrow {d^3} = 8 \times {10^{ - 3}} $
$ \Rightarrow d = 2 \times {10^{ - 1}}m $
Thus, $ d = 20cm $ . It has been said earlier that, neutral point is lying on the broadside.
$ \therefore $ The neutral point is 20 cm east as well as west.
The correct option is Option B.
Note
The characteristics of the current loop are summarized in its magnetic moment. Magnetic fields are produced by electric fields, which can be current in wires, or current associated with electrons in their orbits.
Formula Used: The formulae used in the solution are given here.
$\Rightarrow \overrightarrow B = \dfrac{{{\mu _0}M}}{{4\pi {d^3}}} $ where $ {\mu _0} $ is permeability of free space $ \left( {4\pi \times {{10}^{ - 7}}} \right)Tm{A^{ - 1}} $ , $ B $ is the Magnetic Field, $ M $ is the magnetic moment and $ d $ is the distance of separation.
Complete step by step answer
As we all know, a magnet has two poles, i.e., North and South.
A magnetic field is one that describes the magnetic influence on moving electric charges. It can be defined as a vector field in the vicinity of a magnet, electric current, or changing electric field, in which a charged particle is under the influence of magnetic forces. Magnetic fields force moving electrically charged particles in a circular or helical path.
Magnetic fields such as that of Earth cause magnetic compass needles and other permanent magnets to line up in the direction of the field.
Magnetic moment can be defined as the magnetic strength and orientation of a magnet or other object that produces a magnetic field.
It is known that, for a magnetic dipole with its pole pointing to the north, the neutral point in the broadsides in position.
We know that, $ \overrightarrow B = \dfrac{{{\mu _0}M}}{{4\pi {d^3}}} $ where $ {\mu _0} $ is permeability of free space $ \left( {4\pi \times {{10}^{ - 7}}} \right)Tm{A^{ - 1}} $ , $ B $ is the Magnetic Field, $ M $ is the magnetic moment and $ d $ is the distance of separation.
It is given that, $ \overrightarrow B = 18\mu T $ and $ {\mu _0}M = 1.44 \times {10^{ - 7}}A{m^2} $
Substituting these values in the equation,
$\Rightarrow \dfrac{{1.44 \times {{10}^{ - 7}}}}{{4\pi {d^3}}} = 18 \times {10^{ - 6}} $
To find the neutral position, we have to find the value of $ d $ .
Simplifying the equation we get,
$\Rightarrow \dfrac{{1.44 \times {{10}^{ - 7}}}}{{18 \times {{10}^{ - 6}} \times 4\pi }} = {d^3} $
On taking cube roots on both sides we get,
$ \Rightarrow {\left[ {\dfrac{{1.44 \times {{10}^{ - 7}}}}{{18 \times {{10}^{ - 6}} \times 4\pi }}} \right]^{\dfrac{1}{3}}} = d $
Thus, calculating the value of $ d $ , we find
$\Rightarrow {d^3} = 8 \times {10^{ - 3}} $
$ \Rightarrow d = 2 \times {10^{ - 1}}m $
Thus, $ d = 20cm $ . It has been said earlier that, neutral point is lying on the broadside.
$ \therefore $ The neutral point is 20 cm east as well as west.
The correct option is Option B.
Note
The characteristics of the current loop are summarized in its magnetic moment. Magnetic fields are produced by electric fields, which can be current in wires, or current associated with electrons in their orbits.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

