
A balloon of diameter 20 metre weighs 100 kg. If its pay-load is$\,\text{424}\text{.67 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{x}}}\text{g}$, if it is filled with, He at 1.0 atm and${{27}^{\circ }}C$. Density of air is $1.2kg{{m}^{-3}}$$\left( R=0.082d{{m}^{3}}atm{{K}^{-1}}mo{{l}^{-1}} \right)$.
Then, the value of x is . . . . . . . . .
Answer
550.8k+ views
Hint: Calculate the volume occupied by the volume of given dimensions. Substitute the values given in question to determine the mass of He in the balloon. - Determine the mass of air displaced. With this you can determine the total payload value. The payload value will help you determine the value of x mentioned in the question.
Complete step by step answer:
- So in the question it is asked if a balloon of diameter 20m which has a weight of 100 kg and if its payload is $\,\text{424}\text{.67 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{x}}}\text{g}$ and the balloon is filled with Helium gas at the given pressure and temperature, then find the value of x.
We will first make a note of the data given to us in the question.
The value of radius of balloon $=\,10m$
Weight of the balloon $ = 100kg$
$\text{Payload}\,\text{=}\,\text{424}\text{.67 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{x}}}\text{g}$$\text{Payload}\,\text{=}\,\text{424}\text{.67 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{x}}}\text{g}$
Pressure $=\,1atm$
Temperature $ = {{27}^{\circ }}C$
Density of air $ = 1.2kg{{m}^{-3}}$
We will now calculate the volume of the balloon.
$\text{Volume}\,\text{=}\,\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}$
$\text{Volume}\,\text{=}\,\dfrac{\text{4}}{\text{3}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{22}}{\text{7}}{{\left( \dfrac{\text{20}}{\text{2}}\text{ }\!\!\times\!\!\text{ 100} \right)}^{\text{3}}}$
$\text{Volume}\,\,\text{=}\,\text{4190 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}\text{c}{{\text{m}}^{\text{3}}}$
$\text{Volume}\,\,\text{=}\,\text{4190 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{liters}$
$\text{Mass}\,\text{of}\,\text{He}\,\text{in the balloon}\,\text{=}\,\dfrac{\text{PVm}}{\text{RT}}$
$\text{Mass}\,\text{of}\,\text{He}\,\text{in the balloon}\,\text{=}\,\dfrac{\text{1 }\!\!\times\!\!\text{ 4190 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 4}}{\text{0}\text{.082 }\!\!\times\!\!\text{ 300}}$
$\text{Mass}\,\text{of}\,\text{He}\,\text{in the balloon}\,\text{=}\,\text{68}\text{.13 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{g}$
Thus, the total mass$\text{=}\,\,\text{68}\text{.13 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{g}\,\text{+ 10}\times \text{1}{{\text{0}}^{4}}g=\,78.13\times {{10}^{4}}g$
Mass of air displaced $=1.2\times 4190kg\,=\,5028kg$
- Payload is defined as the difference of mass of air displaced and the total mass of balloon and gas.
$\text{Payload}\,\text{=}\,\text{mass}\,\text{of}\,\text{air}\,\text{displaced}\,\text{-}\,\text{the}\,\text{mass}\,\text{of}\,\text{(balloon}\,\text{+}\,\text{gas)}\,$
$\text{Payload}\,\text{=}\,\text{502}\text{.8 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{-78}\text{.13 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\,\text{=}\,\text{424}\text{.67 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{g}$
Equating the power of 10 to x, we get the value of x as 4.
From the above calculation we can conclude that the value of x is 4.
Note: It is important to convert all quantities to their standard units before substituting them in the equation or formula. This is done to avoid making errors in calculation.
Complete step by step answer:
- So in the question it is asked if a balloon of diameter 20m which has a weight of 100 kg and if its payload is $\,\text{424}\text{.67 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{x}}}\text{g}$ and the balloon is filled with Helium gas at the given pressure and temperature, then find the value of x.
We will first make a note of the data given to us in the question.
The value of radius of balloon $=\,10m$
Weight of the balloon $ = 100kg$
$\text{Payload}\,\text{=}\,\text{424}\text{.67 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{x}}}\text{g}$$\text{Payload}\,\text{=}\,\text{424}\text{.67 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{x}}}\text{g}$
Pressure $=\,1atm$
Temperature $ = {{27}^{\circ }}C$
Density of air $ = 1.2kg{{m}^{-3}}$
We will now calculate the volume of the balloon.
$\text{Volume}\,\text{=}\,\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}$
$\text{Volume}\,\text{=}\,\dfrac{\text{4}}{\text{3}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{22}}{\text{7}}{{\left( \dfrac{\text{20}}{\text{2}}\text{ }\!\!\times\!\!\text{ 100} \right)}^{\text{3}}}$
$\text{Volume}\,\,\text{=}\,\text{4190 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}\text{c}{{\text{m}}^{\text{3}}}$
$\text{Volume}\,\,\text{=}\,\text{4190 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{liters}$
$\text{Mass}\,\text{of}\,\text{He}\,\text{in the balloon}\,\text{=}\,\dfrac{\text{PVm}}{\text{RT}}$
$\text{Mass}\,\text{of}\,\text{He}\,\text{in the balloon}\,\text{=}\,\dfrac{\text{1 }\!\!\times\!\!\text{ 4190 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 4}}{\text{0}\text{.082 }\!\!\times\!\!\text{ 300}}$
$\text{Mass}\,\text{of}\,\text{He}\,\text{in the balloon}\,\text{=}\,\text{68}\text{.13 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{g}$
Thus, the total mass$\text{=}\,\,\text{68}\text{.13 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{g}\,\text{+ 10}\times \text{1}{{\text{0}}^{4}}g=\,78.13\times {{10}^{4}}g$
Mass of air displaced $=1.2\times 4190kg\,=\,5028kg$
- Payload is defined as the difference of mass of air displaced and the total mass of balloon and gas.
$\text{Payload}\,\text{=}\,\text{mass}\,\text{of}\,\text{air}\,\text{displaced}\,\text{-}\,\text{the}\,\text{mass}\,\text{of}\,\text{(balloon}\,\text{+}\,\text{gas)}\,$
$\text{Payload}\,\text{=}\,\text{502}\text{.8 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{-78}\text{.13 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\,\text{=}\,\text{424}\text{.67 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{g}$
Equating the power of 10 to x, we get the value of x as 4.
From the above calculation we can conclude that the value of x is 4.
Note: It is important to convert all quantities to their standard units before substituting them in the equation or formula. This is done to avoid making errors in calculation.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

