Answer

Verified

426k+ views

**Hint:**Here we will use a kinetic energy formula. Also, net change in the kinetic energies will also be calculated.

**Complete answer**:Kinetic Energy: When an object is given some motion then it possesses kinetic energy. Its standard formula is given as, \[{\text{k}} = \dfrac{1}{2}{\text{m}}{{\text{u}}^2}\]where, m is the mass of that object and u is the velocity at which it is moving.

Let the first ball is moving with initial velocity \[{{\text{u}}_1}\], final velocity be \[{{\text{v}}_1}\]. Similarly, the initial velocity of the second ball be \[{{\text{u}}_2}\]and final velocity be \[{{\text{v}}_2}\]. Let the mass of the ball is m.

Now, we will compute the initial kinetic energy and the final kinetic energy of the balls. The formula for total initial kinetic energy is given as,

\[{{\text{K}}_{\text{i}}} = \dfrac{1}{2}{\text{m}}{{\text{u}}_1}^2 + \dfrac{1}{2}{\text{m}}{{\text{u}}_2}^2\]

Total final kinetic energy is given as,

\[{{\text{K}}_{\text{f}}} = \dfrac{1}{2}{\text{m}}{{\text{v}}_1}^2 + \dfrac{1}{2}{\text{m}}{{\text{v}}_2}^2\]

Velocities \[{{\text{u}}_2}\]and\[{{\text{v}}_1}\]are zero. Net change or loss of the kinetic energy is given as,

\[\Delta = \]Total initial kinetic energy –Total final kinetic energy

\[

\Delta = \dfrac{1}{2}{\text{m}}{{\text{u}}_1}^2 + \dfrac{1}{2}{\text{m}}{{\text{u}}_2}^2 - \left( {\dfrac{1}{2}{\text{m}}{{\text{v}}_1}^2 + \dfrac{1}{2}{\text{m}}{{\text{v}}_2}^2} \right) \\

= \dfrac{1}{2}{\text{m}}{{\text{u}}_1}^2 + 0 - 0 - \dfrac{1}{2}{\text{m}}{{\text{v}}_2}^2 \\

\Delta = \dfrac{1}{2}{\text{m}}{{\text{u}}_1}^2 - \dfrac{1}{2}{\text{m}}{{\text{v}}_2}^2 \\

\]

Considering the given question we observe that half of the kinetic energy is lost by impact. Therefore,

Following expression is obtained,

\[ \dfrac{1}{2}\left( {\dfrac{1}{2}{\text{m}}{{\text{v}}_1}^2} \right) = \dfrac{1}{2}{\text{m}}{{\text{u}}_1}^2 - \dfrac{1}{2}{\text{m}}{{\text{v}}_2}^2 \\

{\text{m}}{{\text{v}}_1}^2 = 2{\text{m}}{{\text{u}}_1}^2 - 2{\text{m}}{{\text{v}}_2}^2 \\

{{\text{u}}_1}^2 = 2{{\text{v}}_2}^2 \\

\dfrac{{{{\text{u}}_1}}}{{\sqrt 2 }} = {{\text{v}}_2} \\

\]

Formula of coefficient if restitution is given as,

\[{\text{e}} = \left| {\dfrac{{{{\text{v}}_2} - {{\text{v}}_1}}}{{{{\text{u}}_1} - {{\text{u}}_2}}}} \right|\]Since, the velocities \[{{\text{u}}_2}\] and \[{{\text{v}}_1}\] are zero therefore,

\[\

{\text{e}} = \dfrac{{{{\text{v}}_2}}}{{{{\text{u}}_1}}} \\

{\text{e}} = \dfrac{1}{{\sqrt 2 }} \\

\]

Therefore, the value of the coefficient of restitution is \[\dfrac{1}{{\sqrt 2 }}\].

**Hence, option c is correct.**

**NOTE:**In such types of problems, we must try to apply conservation law of momentum or energy as per the question’s requirement. Also, it is important to learn all the standard formulas of energies like kinetic energy and potential energy.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

A group of fish is known as class 7 english CBSE

The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE

Write all prime numbers between 80 and 100 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Onam is the main festival of which state A Karnataka class 7 social science CBSE

Who administers the oath of office to the President class 10 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE