
A and B can do a piece of work in 12 days, B and C in 15 days, C and A in 20 days then the number of days taken by A, B and C together to finish the work are:
(a) 10 days
(b) 12 days
(c) 14 days
(d) 15 days
Answer
528k+ views
Hint: First, before proceeding for this, we must know the following condition that the work done is always directly proportional to the number of days required. Then, we add all the above cases, we can see that A, B, C all the coming two times which indicate that the addition of these three equations gives the amount of work done by A, B and C in two days. Then, to get the amount of work done in one day by A, B and C, divide it by 2.
Complete step-by-step answer:
In this question, we are supposed to find the number of days taken by A, B and C together to finish the work when the conditions are given that A and B can do a piece of work in 12 days, B and C in 15 days, C and A in 20 days.
So, before proceeding for this, we must know the following condition that the work done is always directly proportional to the number of days required.
Then, by using this condition, we get the following condition for the work done by A and B as:
$ \dfrac{1}{12} $
Similarly, we get the following condition for the work done by B and C as:
$ \dfrac{1}{15} $
Again, we get the following condition for the work done by C and A as:
$ \dfrac{1}{20} $
So, if we add all the above cases, we can see that A, B, C all the coming two times which indicate that the addition of these three equations gives the amount of work done by A, B and C in two days.
So, the two days work of A, B and C is given by:
$ \dfrac{1}{12}+\dfrac{1}{15}+\dfrac{1}{20} $
Then, solve the above expression for getting the total value of work done by A, B and C in two days as:
$ \begin{align}
& \dfrac{5+4+3}{60}=\dfrac{12}{60} \\
& \Rightarrow \dfrac{1}{5} \\
\end{align} $
So, the amount of work done by A, B and C in two days is $ \dfrac{1}{5} $ .
Then to get the amount of work done in one day by A, B and C is given by:
$ \dfrac{1}{5}\times \dfrac{1}{2}=\dfrac{1}{10} $
So, A, B and C all together complete the work in 10 days.
So, the correct answer is “Option A”.
Note: Now, to solve these types of questions we need to know some of the basics of the work and time concept as we can make mistakes in the fact that more days are required to complete more work but less number of people are required to complete more work. So, the above fact defines that work is directly proportional to number of days but inversely proportional to the men required.
Complete step-by-step answer:
In this question, we are supposed to find the number of days taken by A, B and C together to finish the work when the conditions are given that A and B can do a piece of work in 12 days, B and C in 15 days, C and A in 20 days.
So, before proceeding for this, we must know the following condition that the work done is always directly proportional to the number of days required.
Then, by using this condition, we get the following condition for the work done by A and B as:
$ \dfrac{1}{12} $
Similarly, we get the following condition for the work done by B and C as:
$ \dfrac{1}{15} $
Again, we get the following condition for the work done by C and A as:
$ \dfrac{1}{20} $
So, if we add all the above cases, we can see that A, B, C all the coming two times which indicate that the addition of these three equations gives the amount of work done by A, B and C in two days.
So, the two days work of A, B and C is given by:
$ \dfrac{1}{12}+\dfrac{1}{15}+\dfrac{1}{20} $
Then, solve the above expression for getting the total value of work done by A, B and C in two days as:
$ \begin{align}
& \dfrac{5+4+3}{60}=\dfrac{12}{60} \\
& \Rightarrow \dfrac{1}{5} \\
\end{align} $
So, the amount of work done by A, B and C in two days is $ \dfrac{1}{5} $ .
Then to get the amount of work done in one day by A, B and C is given by:
$ \dfrac{1}{5}\times \dfrac{1}{2}=\dfrac{1}{10} $
So, A, B and C all together complete the work in 10 days.
So, the correct answer is “Option A”.
Note: Now, to solve these types of questions we need to know some of the basics of the work and time concept as we can make mistakes in the fact that more days are required to complete more work but less number of people are required to complete more work. So, the above fact defines that work is directly proportional to number of days but inversely proportional to the men required.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
List some examples of Rabi and Kharif crops class 8 biology CBSE

How many ounces are in 500 mL class 8 maths CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

a Define matter Give four examples of matter b What class 8 chemistry CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
