
A 5000 kg rocket is set for vertical firing.
The exhaust speed is \[800m/s\]. To give an upward acceleration of \[20m/s\], the amount of gas ejected per second to supply the needed thrust is \[\left( g=10m/{{s}^{2}} \right)\].
A. \[127.5kg{{s}^{-1}}\]
B. \[137.5kg{{s}^{-1}}\]
C. \[187.5kg{{s}^{-1}}\]
D. \[188.5kg{{s}^{-1}}\]
Answer
508.8k+ views
Hint: Since, a rocket of mass 500 kg is set for a vertical firing and its exhaust speed is 800 m/s. upward acceleration is 20m/s. Then we use the formula of thrust on the rocket to find the amount of gas ejected per second to supply the needed thrust.
Complete answer:
Given that
Mass of the rocket m = 500kg
Acceleration of the rocket \[a=20m/{{s}^{2}}\]
Speed of the rocket \[v=800m/s\]
Also, \[g=10m/{{s}^{2}}\]
As we know that the force on the rocket is given by
\[{{f}_{z}}={{v}_{r}}\left( \dfrac{-dm}{dt} \right)\]
So, Net force on the rocket
\[\begin{align}
& {{f}_{net}}={{f}_{t}}-w \\
& \Rightarrow ma={{v}_{r}}\left( \dfrac{-dm}{dt} \right)-mg \\
& \Rightarrow \dfrac{-dm}{dt}=\dfrac{m\left( g+a \right)}{{{v}_{r}}} \\
\end{align}\]
Rate of gas ejected per second\[\dfrac{-dm}{dt}=\dfrac{5000\left( 10+20 \right)}{800}\]
\[\Rightarrow \dfrac{-dm}{dt}=187.5kg/s\]
Therefore, the amount of Second is 187.5 kg /s.
So, the correct answer is “Option C”.
Note:
As we know that the Thrust force on the rocket is given by\[{{f}_{t}}={{v}_{r}}\left( \dfrac{-dm}{dt} \right)\] and Net force on the rocket \[{{f}_{net}}=ma\]. So, use the formula to calculate the amount of gas ejected per second i.e. rate is given by \[\dfrac{-dm}{dt}\]
Be careful during the calculation and put the value at its exact time.
Complete answer:
Given that
Mass of the rocket m = 500kg
Acceleration of the rocket \[a=20m/{{s}^{2}}\]
Speed of the rocket \[v=800m/s\]
Also, \[g=10m/{{s}^{2}}\]
As we know that the force on the rocket is given by
\[{{f}_{z}}={{v}_{r}}\left( \dfrac{-dm}{dt} \right)\]
So, Net force on the rocket
\[\begin{align}
& {{f}_{net}}={{f}_{t}}-w \\
& \Rightarrow ma={{v}_{r}}\left( \dfrac{-dm}{dt} \right)-mg \\
& \Rightarrow \dfrac{-dm}{dt}=\dfrac{m\left( g+a \right)}{{{v}_{r}}} \\
\end{align}\]
Rate of gas ejected per second\[\dfrac{-dm}{dt}=\dfrac{5000\left( 10+20 \right)}{800}\]
\[\Rightarrow \dfrac{-dm}{dt}=187.5kg/s\]
Therefore, the amount of Second is 187.5 kg /s.
So, the correct answer is “Option C”.
Note:
As we know that the Thrust force on the rocket is given by\[{{f}_{t}}={{v}_{r}}\left( \dfrac{-dm}{dt} \right)\] and Net force on the rocket \[{{f}_{net}}=ma\]. So, use the formula to calculate the amount of gas ejected per second i.e. rate is given by \[\dfrac{-dm}{dt}\]
Be careful during the calculation and put the value at its exact time.
Recently Updated Pages
If the ratio of diameters lengths and youngs modulus class 11 physics CBSE

The binomial coefficient of the third term of the end class 11 maths CBSE

Number of rational terms in the expansion of left sqrt2+sqrt3+sqrt35 class 11 maths CBSE

The total number of fivedigit numbers of different class 11 maths CBSE

The tallest tree of gymnosperms is A Cycas B Pinus class 11 biology CBSE

How are Stefans law and Newtons law of cooling rel class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

