
(6,0), (0,6) and (7,7) are the vertices of a triangle. The circle inscribed in the triangle has equation
A) ${x^2} + {y^2} - 9x + 9y + 36 = 0$
B) ${x^2} + {y^2} - 9x - 9y + 36 = 0$
C) ${x^2} + {y^2} + 9x - 9y + 36 = 0$
D) ${x^2} + {y^2} - 9x - 9y - 36 = 0$
Answer
577.5k+ views
Hint:
Let the triangle be ABC which has vertices A(6,0), B(0,6) and C(7,7) and AB, BC and AC are the sides with distances a, b and c respectively.
Using the distance formula, find the distances a, b and c.
Now, using the formula $O = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)$ , find the in-centre i.e. (h,k) of the circle.
Also, in-radius can be found using $r = \dfrac{{\left| {x + y - 6} \right|}}{{\sqrt {{a^2} + {b^2}} }}$ , where \[x + y = 6\] is the equation of line join point A and B.
Thus, the equation of circle can be found by ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$.
Complete step by step solution:
Let the triangle be ABC which has vertices A(6,0), B(0,6) and C(7,7) and AB, BC and AC are the sides with distances a, b and c respectively.
Using the distance formula, we can find the distances a, b and c
$\Rightarrow a = \sqrt {{{\left( {7 - 0} \right)}^2} + {{\left( {7 - 6} \right)}^2}} $
$
= \sqrt {{{\left( 7 \right)}^2} + {{\left( 1 \right)}^2}} \\
= \sqrt {49 + 1} \\
= \sqrt {50} \\
= 5\sqrt 2 \\
$
$\Rightarrow b = \sqrt {{{\left( {7 - 6} \right)}^2} + {{\left( {7 - 0} \right)}^2}} $
$
= \sqrt {{{\left( 1 \right)}^2} + {{\left( 7 \right)}^2}} \\
= \sqrt {1 + 49} \\
= \sqrt {50} \\
= 5\sqrt 2 \\
$
$\Rightarrow c = \sqrt {{{\left( {6 - 0} \right)}^2} + {{\left( {0 - 6} \right)}^2}} $
$
= \sqrt {{{\left( 6 \right)}^2} + {{\left( { - 6} \right)}^2}} \\
= \sqrt {36 + 36} \\
= \sqrt {36\left( 2 \right)} \\
= 6\sqrt 2 \\
$
Let us assume the in-centre of the circle as O.
So, we get
$
O = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right) \\
= \left( {\dfrac{{5\sqrt 2 \left( 6 \right) + 5\sqrt 2 \left( 0 \right) + 6\sqrt 2 \left( 7 \right)}}{{5\sqrt 2 + 5\sqrt 2 + 6\sqrt 2 }},\dfrac{{5\sqrt 2 \left( 0 \right) + 5\sqrt 2 \left( 6 \right) + 6\sqrt 2 \left( 7 \right)}}{{5\sqrt 2 + 5\sqrt 2 + 6\sqrt 2 }}} \right) \\
= \left( {\dfrac{9}{2},\dfrac{9}{2}} \right) \\
$
Also, the in-radius r of the in-circle is equal to the perpendicular distance from in-centre to any of the sides.
So, the equation of the line AB using two-point form can be formed as
$
y - 0 = \left( {\dfrac{{6 - 0}}{{0 - 6}}} \right)\left( {x - 6} \right) \\
\Rightarrow y = \dfrac{6}{{ - 6}}\left( {x - 6} \right) \\
\Rightarrow y = - \left( {x - 6} \right) \\
\Rightarrow x + y - 6 = 0 \\
$
Thus, the in-radius of the in-circle can be given by $r = \dfrac{{\left| {x + y - 6} \right|}}{{\sqrt {{a^2} + {b^2}} }}$ .
$
\Rightarrow r = \dfrac{{\left| {\dfrac{9}{2} + \dfrac{9}{2} - 6} \right|}}{{\sqrt {{1^2} + {1^2}} }} \\
\Rightarrow r = \dfrac{{\left| {9 - 6} \right|}}{{\sqrt {1 + 1} }} \\
\Rightarrow r = \dfrac{{\left| 3 \right|}}{{\sqrt 2 }} \\
$
Thus, we get the radius of circle $r = \dfrac{3}{{\sqrt 2 }}$ .
The equation of the circle can be formed using the formula ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$ , where $h = \dfrac{9}{2},k = \dfrac{9}{2},r = \dfrac{3}{{\sqrt 2 }}$ .
\[
\Rightarrow {\left( {x - \dfrac{9}{2}} \right)^2} + {\left( {y - \dfrac{9}{2}} \right)^2} = {\left( {\dfrac{3}{{\sqrt 2 }}} \right)^2} \\
\Rightarrow {x^2} - 9x + \dfrac{{81}}{4} + {y^2} - 9y + \dfrac{{81}}{4} = \dfrac{9}{2} \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + 2\left( {\dfrac{{81}}{4}} \right) - \dfrac{9}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{81}}{2} - \dfrac{9}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{81 - 9}}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{72}}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + 36 = 0 \\
\]
Thus, the equation of the circle is \[{x^2} + {y^2} - 9x - 9y + 36 = 0\] .
Option (B) is correct.
Note:
Alternate Method:
Let the triangle be ABC which has vertices A(6,0), B(0,6) and C(7,7) and AB, BC and AC are the sides with distances a, b and c respectively.
Using the distance formula, we can find the distances a, b and c
$\Rightarrow a = \sqrt {{{\left( {7 - 0} \right)}^2} + {{\left( {7 - 6} \right)}^2}} $
$
= \sqrt {{{\left( 7 \right)}^2} + {{\left( 1 \right)}^2}} \\
= \sqrt {49 + 1} \\
= \sqrt {50} \\
= 5\sqrt 2 \\
$
$\Rightarrow b = \sqrt {{{\left( {7 - 6} \right)}^2} + {{\left( {7 - 0} \right)}^2}} $
$
= \sqrt {{{\left( 1 \right)}^2} + {{\left( 7 \right)}^2}} \\
= \sqrt {1 + 49} \\
= \sqrt {50} \\
= 5\sqrt 2 \\
$
$\Rightarrow c = \sqrt {{{\left( {6 - 0} \right)}^2} + {{\left( {0 - 6} \right)}^2}} $
$
= \sqrt {{{\left( 6 \right)}^2} + {{\left( { - 6} \right)}^2}} \\
= \sqrt {36 + 36} \\
= \sqrt {36\left( 2 \right)} \\
= 6\sqrt 2 \\
$
Let us assume the in-centre of the circle as O.
So, we get
$
O = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right) \\
= \left( {\dfrac{{5\sqrt 2 \left( 6 \right) + 5\sqrt 2 \left( 0 \right) + 6\sqrt 2 \left( 7 \right)}}{{5\sqrt 2 + 5\sqrt 2 + 6\sqrt 2 }},\dfrac{{5\sqrt 2 \left( 0 \right) + 5\sqrt 2 \left( 6 \right) + 6\sqrt 2 \left( 7 \right)}}{{5\sqrt 2 + 5\sqrt 2 + 6\sqrt 2 }}} \right) \\
= \left( {\dfrac{9}{2},\dfrac{9}{2}} \right) \\
$
Let M be the midpoint of the line AB.
$\Rightarrow $ The coordinates of M will be $\left( {\dfrac{{6 + 0}}{2},\dfrac{{0 + 6}}{2}} \right) = \left( {3,3} \right)$ .
Now, for radius we will find the distance OM using the distance formula between the points O $\left( {\dfrac{9}{2},\dfrac{9}{2}} \right)$ and M(3,3).
$
\left| {OM} \right| = \sqrt {{{\left( {\dfrac{9}{2} - 3} \right)}^2} + {{\left( {\dfrac{9}{2} - 3} \right)}^2}} \\
= \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2} + {{\left( {\dfrac{3}{2}} \right)}^2}} \\
= \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2}\left( {1 + 1} \right)} \\
= \dfrac{3}{2}\sqrt 2 \\
= \dfrac{3}{{\sqrt 2 }} \\
$
Thus, $r = \dfrac{3}{{\sqrt 2 }}$ .
The equation of the circle can be formed using the formula ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$ , where $h = \dfrac{9}{2},k = \dfrac{9}{2},r = \dfrac{3}{{\sqrt 2 }}$ .
\[
\Rightarrow {\left( {x - \dfrac{9}{2}} \right)^2} + {\left( {y - \dfrac{9}{2}} \right)^2} = {\left( {\dfrac{3}{{\sqrt 2 }}} \right)^2} \\
\Rightarrow {x^2} - 9x + \dfrac{{81}}{4} + {y^2} - 9y + \dfrac{{81}}{4} = \dfrac{9}{2} \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + 2\left( {\dfrac{{81}}{4}} \right) - \dfrac{9}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{81}}{2} - \dfrac{9}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{81 - 9}}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{72}}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + 36 = 0 \\
\]
Thus, the equation of the circle is \[{x^2} + {y^2} - 9x - 9y + 36 = 0\] .
Let the triangle be ABC which has vertices A(6,0), B(0,6) and C(7,7) and AB, BC and AC are the sides with distances a, b and c respectively.
Using the distance formula, find the distances a, b and c.
Now, using the formula $O = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)$ , find the in-centre i.e. (h,k) of the circle.
Also, in-radius can be found using $r = \dfrac{{\left| {x + y - 6} \right|}}{{\sqrt {{a^2} + {b^2}} }}$ , where \[x + y = 6\] is the equation of line join point A and B.
Thus, the equation of circle can be found by ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$.
Complete step by step solution:
Let the triangle be ABC which has vertices A(6,0), B(0,6) and C(7,7) and AB, BC and AC are the sides with distances a, b and c respectively.
Using the distance formula, we can find the distances a, b and c
$\Rightarrow a = \sqrt {{{\left( {7 - 0} \right)}^2} + {{\left( {7 - 6} \right)}^2}} $
$
= \sqrt {{{\left( 7 \right)}^2} + {{\left( 1 \right)}^2}} \\
= \sqrt {49 + 1} \\
= \sqrt {50} \\
= 5\sqrt 2 \\
$
$\Rightarrow b = \sqrt {{{\left( {7 - 6} \right)}^2} + {{\left( {7 - 0} \right)}^2}} $
$
= \sqrt {{{\left( 1 \right)}^2} + {{\left( 7 \right)}^2}} \\
= \sqrt {1 + 49} \\
= \sqrt {50} \\
= 5\sqrt 2 \\
$
$\Rightarrow c = \sqrt {{{\left( {6 - 0} \right)}^2} + {{\left( {0 - 6} \right)}^2}} $
$
= \sqrt {{{\left( 6 \right)}^2} + {{\left( { - 6} \right)}^2}} \\
= \sqrt {36 + 36} \\
= \sqrt {36\left( 2 \right)} \\
= 6\sqrt 2 \\
$
Let us assume the in-centre of the circle as O.
So, we get
$
O = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right) \\
= \left( {\dfrac{{5\sqrt 2 \left( 6 \right) + 5\sqrt 2 \left( 0 \right) + 6\sqrt 2 \left( 7 \right)}}{{5\sqrt 2 + 5\sqrt 2 + 6\sqrt 2 }},\dfrac{{5\sqrt 2 \left( 0 \right) + 5\sqrt 2 \left( 6 \right) + 6\sqrt 2 \left( 7 \right)}}{{5\sqrt 2 + 5\sqrt 2 + 6\sqrt 2 }}} \right) \\
= \left( {\dfrac{9}{2},\dfrac{9}{2}} \right) \\
$
Also, the in-radius r of the in-circle is equal to the perpendicular distance from in-centre to any of the sides.
So, the equation of the line AB using two-point form can be formed as
$
y - 0 = \left( {\dfrac{{6 - 0}}{{0 - 6}}} \right)\left( {x - 6} \right) \\
\Rightarrow y = \dfrac{6}{{ - 6}}\left( {x - 6} \right) \\
\Rightarrow y = - \left( {x - 6} \right) \\
\Rightarrow x + y - 6 = 0 \\
$
Thus, the in-radius of the in-circle can be given by $r = \dfrac{{\left| {x + y - 6} \right|}}{{\sqrt {{a^2} + {b^2}} }}$ .
$
\Rightarrow r = \dfrac{{\left| {\dfrac{9}{2} + \dfrac{9}{2} - 6} \right|}}{{\sqrt {{1^2} + {1^2}} }} \\
\Rightarrow r = \dfrac{{\left| {9 - 6} \right|}}{{\sqrt {1 + 1} }} \\
\Rightarrow r = \dfrac{{\left| 3 \right|}}{{\sqrt 2 }} \\
$
Thus, we get the radius of circle $r = \dfrac{3}{{\sqrt 2 }}$ .
The equation of the circle can be formed using the formula ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$ , where $h = \dfrac{9}{2},k = \dfrac{9}{2},r = \dfrac{3}{{\sqrt 2 }}$ .
\[
\Rightarrow {\left( {x - \dfrac{9}{2}} \right)^2} + {\left( {y - \dfrac{9}{2}} \right)^2} = {\left( {\dfrac{3}{{\sqrt 2 }}} \right)^2} \\
\Rightarrow {x^2} - 9x + \dfrac{{81}}{4} + {y^2} - 9y + \dfrac{{81}}{4} = \dfrac{9}{2} \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + 2\left( {\dfrac{{81}}{4}} \right) - \dfrac{9}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{81}}{2} - \dfrac{9}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{81 - 9}}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{72}}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + 36 = 0 \\
\]
Thus, the equation of the circle is \[{x^2} + {y^2} - 9x - 9y + 36 = 0\] .
Option (B) is correct.
Note:
Alternate Method:
Let the triangle be ABC which has vertices A(6,0), B(0,6) and C(7,7) and AB, BC and AC are the sides with distances a, b and c respectively.
Using the distance formula, we can find the distances a, b and c
$\Rightarrow a = \sqrt {{{\left( {7 - 0} \right)}^2} + {{\left( {7 - 6} \right)}^2}} $
$
= \sqrt {{{\left( 7 \right)}^2} + {{\left( 1 \right)}^2}} \\
= \sqrt {49 + 1} \\
= \sqrt {50} \\
= 5\sqrt 2 \\
$
$\Rightarrow b = \sqrt {{{\left( {7 - 6} \right)}^2} + {{\left( {7 - 0} \right)}^2}} $
$
= \sqrt {{{\left( 1 \right)}^2} + {{\left( 7 \right)}^2}} \\
= \sqrt {1 + 49} \\
= \sqrt {50} \\
= 5\sqrt 2 \\
$
$\Rightarrow c = \sqrt {{{\left( {6 - 0} \right)}^2} + {{\left( {0 - 6} \right)}^2}} $
$
= \sqrt {{{\left( 6 \right)}^2} + {{\left( { - 6} \right)}^2}} \\
= \sqrt {36 + 36} \\
= \sqrt {36\left( 2 \right)} \\
= 6\sqrt 2 \\
$
Let us assume the in-centre of the circle as O.
So, we get
$
O = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right) \\
= \left( {\dfrac{{5\sqrt 2 \left( 6 \right) + 5\sqrt 2 \left( 0 \right) + 6\sqrt 2 \left( 7 \right)}}{{5\sqrt 2 + 5\sqrt 2 + 6\sqrt 2 }},\dfrac{{5\sqrt 2 \left( 0 \right) + 5\sqrt 2 \left( 6 \right) + 6\sqrt 2 \left( 7 \right)}}{{5\sqrt 2 + 5\sqrt 2 + 6\sqrt 2 }}} \right) \\
= \left( {\dfrac{9}{2},\dfrac{9}{2}} \right) \\
$
Let M be the midpoint of the line AB.
$\Rightarrow $ The coordinates of M will be $\left( {\dfrac{{6 + 0}}{2},\dfrac{{0 + 6}}{2}} \right) = \left( {3,3} \right)$ .
Now, for radius we will find the distance OM using the distance formula between the points O $\left( {\dfrac{9}{2},\dfrac{9}{2}} \right)$ and M(3,3).
$
\left| {OM} \right| = \sqrt {{{\left( {\dfrac{9}{2} - 3} \right)}^2} + {{\left( {\dfrac{9}{2} - 3} \right)}^2}} \\
= \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2} + {{\left( {\dfrac{3}{2}} \right)}^2}} \\
= \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2}\left( {1 + 1} \right)} \\
= \dfrac{3}{2}\sqrt 2 \\
= \dfrac{3}{{\sqrt 2 }} \\
$
Thus, $r = \dfrac{3}{{\sqrt 2 }}$ .
The equation of the circle can be formed using the formula ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$ , where $h = \dfrac{9}{2},k = \dfrac{9}{2},r = \dfrac{3}{{\sqrt 2 }}$ .
\[
\Rightarrow {\left( {x - \dfrac{9}{2}} \right)^2} + {\left( {y - \dfrac{9}{2}} \right)^2} = {\left( {\dfrac{3}{{\sqrt 2 }}} \right)^2} \\
\Rightarrow {x^2} - 9x + \dfrac{{81}}{4} + {y^2} - 9y + \dfrac{{81}}{4} = \dfrac{9}{2} \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + 2\left( {\dfrac{{81}}{4}} \right) - \dfrac{9}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{81}}{2} - \dfrac{9}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{81 - 9}}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + \dfrac{{72}}{2} = 0 \\
\Rightarrow {x^2} + {y^2} - 9x - 9y + 36 = 0 \\
\]
Thus, the equation of the circle is \[{x^2} + {y^2} - 9x - 9y + 36 = 0\] .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

