
$3\sqrt{3}{{x}^{3}}+{{y}^{3}}$is equal to
A. \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right)\]
B. \[\left( \sqrt{3}x-y \right)\left( 3{{x}^{2}}+\sqrt{3}xy+{{y}^{2}} \right)\]
C. \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}+\sqrt{3}xy+{{y}^{2}} \right)\]
D. \[\left( \sqrt{3}x-y \right)\left( 3{{x}^{2}}-\sqrt{3}xy-{{y}^{2}} \right)\]
Answer
579k+ views
Hint: First change the given algebraic expression into the form \[{{a}^{3}}+{{b}^{3}}\] and then use the identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$ to break it into its factors to get the answer.
Complete step by step answer:
Given algebraic expression $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$.
We have to find an expression among the options which is equivalent to this given expression.
Among the options, we can see that all the expressions in the options are simpler expressions multiplied together.
Its means we have to convert $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$ into product of simpler expression i.e. we have to factorise this expression.
We know the identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
To use this identity, first we have to convert the given expression into the form \[{{a}^{3}}+{{b}^{3}}\].
$3\sqrt{3}{{x}^{3}}$ can be written as \[{{\left( \sqrt{3}x \right)}^{3}}\]as,
$\sqrt{3}x\times \sqrt{3}x\times \sqrt{3}x=3\sqrt{3}{{x}^{3}}$ and
${{y}^{3}}$ can be written as ${{\left( y \right)}^{3}}$as,
$y\times y\times y={{y}^{3}}$
So, $3\sqrt{3}{{x}^{3}}+{{y}^{3}}={{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}$
Putting $a=\sqrt{3}x\ and\ b=y$ in the above identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$, we will get,
\[\begin{align}
& {{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}=\left[ \left( \sqrt{3}x \right)+\left( y \right) \right]\left[ {{\left( \sqrt{3}x \right)}^{2}}-\left( \sqrt{3}x \right)\left( y \right)+{{\left( y \right)}^{2}} \right] \\
& \Rightarrow 3\sqrt{3}{{x}^{3}}+{{y}^{3}}=\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right) \\
\end{align}\]
Hence, $\left( 3\sqrt{3}{{x}^{3}}+{{y}^{3}} \right)$ will be equivalent to \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right)\]
So, the correct answer is “Option A”.
Note: We can prove the identity used in the following way:
Identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
Proof: $LHS={{a}^{3}}+{{b}^{3}}$
Adding and subtracting $3ab\left( a+b \right)$, we will get,
$LHS={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)-3ab\left( a+b \right)$
We know ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
So, replacing ${{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\ by\ {{\left( a+b \right)}^{3}}$, we will get,
\[LHS={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Taking \[\left( a+b \right)\] common from both the terms, we will get,
\[\begin{align}
& LHS=\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& We\ know\ {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \Rightarrow LHS=\left( a+b \right)\left[ {{a}^{2}}+{{b}^{2}}+2ab-3ab \right] \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right) \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Hence, Proved.
Complete step by step answer:
Given algebraic expression $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$.
We have to find an expression among the options which is equivalent to this given expression.
Among the options, we can see that all the expressions in the options are simpler expressions multiplied together.
Its means we have to convert $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$ into product of simpler expression i.e. we have to factorise this expression.
We know the identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
To use this identity, first we have to convert the given expression into the form \[{{a}^{3}}+{{b}^{3}}\].
$3\sqrt{3}{{x}^{3}}$ can be written as \[{{\left( \sqrt{3}x \right)}^{3}}\]as,
$\sqrt{3}x\times \sqrt{3}x\times \sqrt{3}x=3\sqrt{3}{{x}^{3}}$ and
${{y}^{3}}$ can be written as ${{\left( y \right)}^{3}}$as,
$y\times y\times y={{y}^{3}}$
So, $3\sqrt{3}{{x}^{3}}+{{y}^{3}}={{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}$
Putting $a=\sqrt{3}x\ and\ b=y$ in the above identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$, we will get,
\[\begin{align}
& {{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}=\left[ \left( \sqrt{3}x \right)+\left( y \right) \right]\left[ {{\left( \sqrt{3}x \right)}^{2}}-\left( \sqrt{3}x \right)\left( y \right)+{{\left( y \right)}^{2}} \right] \\
& \Rightarrow 3\sqrt{3}{{x}^{3}}+{{y}^{3}}=\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right) \\
\end{align}\]
Hence, $\left( 3\sqrt{3}{{x}^{3}}+{{y}^{3}} \right)$ will be equivalent to \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right)\]
So, the correct answer is “Option A”.
Note: We can prove the identity used in the following way:
Identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
Proof: $LHS={{a}^{3}}+{{b}^{3}}$
Adding and subtracting $3ab\left( a+b \right)$, we will get,
$LHS={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)-3ab\left( a+b \right)$
We know ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
So, replacing ${{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\ by\ {{\left( a+b \right)}^{3}}$, we will get,
\[LHS={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Taking \[\left( a+b \right)\] common from both the terms, we will get,
\[\begin{align}
& LHS=\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& We\ know\ {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \Rightarrow LHS=\left( a+b \right)\left[ {{a}^{2}}+{{b}^{2}}+2ab-3ab \right] \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right) \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Hence, Proved.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

