
$3\sqrt{3}{{x}^{3}}+{{y}^{3}}$is equal to
A. \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right)\]
B. \[\left( \sqrt{3}x-y \right)\left( 3{{x}^{2}}+\sqrt{3}xy+{{y}^{2}} \right)\]
C. \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}+\sqrt{3}xy+{{y}^{2}} \right)\]
D. \[\left( \sqrt{3}x-y \right)\left( 3{{x}^{2}}-\sqrt{3}xy-{{y}^{2}} \right)\]
Answer
565.5k+ views
Hint: First change the given algebraic expression into the form \[{{a}^{3}}+{{b}^{3}}\] and then use the identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$ to break it into its factors to get the answer.
Complete step by step answer:
Given algebraic expression $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$.
We have to find an expression among the options which is equivalent to this given expression.
Among the options, we can see that all the expressions in the options are simpler expressions multiplied together.
Its means we have to convert $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$ into product of simpler expression i.e. we have to factorise this expression.
We know the identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
To use this identity, first we have to convert the given expression into the form \[{{a}^{3}}+{{b}^{3}}\].
$3\sqrt{3}{{x}^{3}}$ can be written as \[{{\left( \sqrt{3}x \right)}^{3}}\]as,
$\sqrt{3}x\times \sqrt{3}x\times \sqrt{3}x=3\sqrt{3}{{x}^{3}}$ and
${{y}^{3}}$ can be written as ${{\left( y \right)}^{3}}$as,
$y\times y\times y={{y}^{3}}$
So, $3\sqrt{3}{{x}^{3}}+{{y}^{3}}={{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}$
Putting $a=\sqrt{3}x\ and\ b=y$ in the above identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$, we will get,
\[\begin{align}
& {{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}=\left[ \left( \sqrt{3}x \right)+\left( y \right) \right]\left[ {{\left( \sqrt{3}x \right)}^{2}}-\left( \sqrt{3}x \right)\left( y \right)+{{\left( y \right)}^{2}} \right] \\
& \Rightarrow 3\sqrt{3}{{x}^{3}}+{{y}^{3}}=\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right) \\
\end{align}\]
Hence, $\left( 3\sqrt{3}{{x}^{3}}+{{y}^{3}} \right)$ will be equivalent to \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right)\]
So, the correct answer is “Option A”.
Note: We can prove the identity used in the following way:
Identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
Proof: $LHS={{a}^{3}}+{{b}^{3}}$
Adding and subtracting $3ab\left( a+b \right)$, we will get,
$LHS={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)-3ab\left( a+b \right)$
We know ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
So, replacing ${{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\ by\ {{\left( a+b \right)}^{3}}$, we will get,
\[LHS={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Taking \[\left( a+b \right)\] common from both the terms, we will get,
\[\begin{align}
& LHS=\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& We\ know\ {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \Rightarrow LHS=\left( a+b \right)\left[ {{a}^{2}}+{{b}^{2}}+2ab-3ab \right] \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right) \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Hence, Proved.
Complete step by step answer:
Given algebraic expression $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$.
We have to find an expression among the options which is equivalent to this given expression.
Among the options, we can see that all the expressions in the options are simpler expressions multiplied together.
Its means we have to convert $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$ into product of simpler expression i.e. we have to factorise this expression.
We know the identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
To use this identity, first we have to convert the given expression into the form \[{{a}^{3}}+{{b}^{3}}\].
$3\sqrt{3}{{x}^{3}}$ can be written as \[{{\left( \sqrt{3}x \right)}^{3}}\]as,
$\sqrt{3}x\times \sqrt{3}x\times \sqrt{3}x=3\sqrt{3}{{x}^{3}}$ and
${{y}^{3}}$ can be written as ${{\left( y \right)}^{3}}$as,
$y\times y\times y={{y}^{3}}$
So, $3\sqrt{3}{{x}^{3}}+{{y}^{3}}={{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}$
Putting $a=\sqrt{3}x\ and\ b=y$ in the above identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$, we will get,
\[\begin{align}
& {{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}=\left[ \left( \sqrt{3}x \right)+\left( y \right) \right]\left[ {{\left( \sqrt{3}x \right)}^{2}}-\left( \sqrt{3}x \right)\left( y \right)+{{\left( y \right)}^{2}} \right] \\
& \Rightarrow 3\sqrt{3}{{x}^{3}}+{{y}^{3}}=\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right) \\
\end{align}\]
Hence, $\left( 3\sqrt{3}{{x}^{3}}+{{y}^{3}} \right)$ will be equivalent to \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right)\]
So, the correct answer is “Option A”.
Note: We can prove the identity used in the following way:
Identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
Proof: $LHS={{a}^{3}}+{{b}^{3}}$
Adding and subtracting $3ab\left( a+b \right)$, we will get,
$LHS={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)-3ab\left( a+b \right)$
We know ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
So, replacing ${{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\ by\ {{\left( a+b \right)}^{3}}$, we will get,
\[LHS={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Taking \[\left( a+b \right)\] common from both the terms, we will get,
\[\begin{align}
& LHS=\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& We\ know\ {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \Rightarrow LHS=\left( a+b \right)\left[ {{a}^{2}}+{{b}^{2}}+2ab-3ab \right] \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right) \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Hence, Proved.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

Write the difference between soap and detergent class 10 chemistry CBSE

