
$3\sqrt{3}{{x}^{3}}+{{y}^{3}}$is equal to
A. \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right)\]
B. \[\left( \sqrt{3}x-y \right)\left( 3{{x}^{2}}+\sqrt{3}xy+{{y}^{2}} \right)\]
C. \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}+\sqrt{3}xy+{{y}^{2}} \right)\]
D. \[\left( \sqrt{3}x-y \right)\left( 3{{x}^{2}}-\sqrt{3}xy-{{y}^{2}} \right)\]
Answer
481.5k+ views
Hint: First change the given algebraic expression into the form \[{{a}^{3}}+{{b}^{3}}\] and then use the identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$ to break it into its factors to get the answer.
Complete step by step answer:
Given algebraic expression $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$.
We have to find an expression among the options which is equivalent to this given expression.
Among the options, we can see that all the expressions in the options are simpler expressions multiplied together.
Its means we have to convert $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$ into product of simpler expression i.e. we have to factorise this expression.
We know the identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
To use this identity, first we have to convert the given expression into the form \[{{a}^{3}}+{{b}^{3}}\].
$3\sqrt{3}{{x}^{3}}$ can be written as \[{{\left( \sqrt{3}x \right)}^{3}}\]as,
$\sqrt{3}x\times \sqrt{3}x\times \sqrt{3}x=3\sqrt{3}{{x}^{3}}$ and
${{y}^{3}}$ can be written as ${{\left( y \right)}^{3}}$as,
$y\times y\times y={{y}^{3}}$
So, $3\sqrt{3}{{x}^{3}}+{{y}^{3}}={{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}$
Putting $a=\sqrt{3}x\ and\ b=y$ in the above identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$, we will get,
\[\begin{align}
& {{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}=\left[ \left( \sqrt{3}x \right)+\left( y \right) \right]\left[ {{\left( \sqrt{3}x \right)}^{2}}-\left( \sqrt{3}x \right)\left( y \right)+{{\left( y \right)}^{2}} \right] \\
& \Rightarrow 3\sqrt{3}{{x}^{3}}+{{y}^{3}}=\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right) \\
\end{align}\]
Hence, $\left( 3\sqrt{3}{{x}^{3}}+{{y}^{3}} \right)$ will be equivalent to \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right)\]
So, the correct answer is “Option A”.
Note: We can prove the identity used in the following way:
Identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
Proof: $LHS={{a}^{3}}+{{b}^{3}}$
Adding and subtracting $3ab\left( a+b \right)$, we will get,
$LHS={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)-3ab\left( a+b \right)$
We know ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
So, replacing ${{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\ by\ {{\left( a+b \right)}^{3}}$, we will get,
\[LHS={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Taking \[\left( a+b \right)\] common from both the terms, we will get,
\[\begin{align}
& LHS=\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& We\ know\ {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \Rightarrow LHS=\left( a+b \right)\left[ {{a}^{2}}+{{b}^{2}}+2ab-3ab \right] \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right) \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Hence, Proved.
Complete step by step answer:
Given algebraic expression $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$.
We have to find an expression among the options which is equivalent to this given expression.
Among the options, we can see that all the expressions in the options are simpler expressions multiplied together.
Its means we have to convert $3\sqrt{3}{{x}^{3}}+{{y}^{3}}$ into product of simpler expression i.e. we have to factorise this expression.
We know the identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
To use this identity, first we have to convert the given expression into the form \[{{a}^{3}}+{{b}^{3}}\].
$3\sqrt{3}{{x}^{3}}$ can be written as \[{{\left( \sqrt{3}x \right)}^{3}}\]as,
$\sqrt{3}x\times \sqrt{3}x\times \sqrt{3}x=3\sqrt{3}{{x}^{3}}$ and
${{y}^{3}}$ can be written as ${{\left( y \right)}^{3}}$as,
$y\times y\times y={{y}^{3}}$
So, $3\sqrt{3}{{x}^{3}}+{{y}^{3}}={{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}$
Putting $a=\sqrt{3}x\ and\ b=y$ in the above identity $''{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)''$, we will get,
\[\begin{align}
& {{\left( \sqrt{3}x \right)}^{3}}+{{\left( y \right)}^{3}}=\left[ \left( \sqrt{3}x \right)+\left( y \right) \right]\left[ {{\left( \sqrt{3}x \right)}^{2}}-\left( \sqrt{3}x \right)\left( y \right)+{{\left( y \right)}^{2}} \right] \\
& \Rightarrow 3\sqrt{3}{{x}^{3}}+{{y}^{3}}=\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right) \\
\end{align}\]
Hence, $\left( 3\sqrt{3}{{x}^{3}}+{{y}^{3}} \right)$ will be equivalent to \[\left( \sqrt{3}x+y \right)\left( 3{{x}^{2}}-\sqrt{3}xy+{{y}^{2}} \right)\]
So, the correct answer is “Option A”.
Note: We can prove the identity used in the following way:
Identity: ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
Proof: $LHS={{a}^{3}}+{{b}^{3}}$
Adding and subtracting $3ab\left( a+b \right)$, we will get,
$LHS={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)-3ab\left( a+b \right)$
We know ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$
So, replacing ${{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\ by\ {{\left( a+b \right)}^{3}}$, we will get,
\[LHS={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
Taking \[\left( a+b \right)\] common from both the terms, we will get,
\[\begin{align}
& LHS=\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& We\ know\ {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \Rightarrow LHS=\left( a+b \right)\left[ {{a}^{2}}+{{b}^{2}}+2ab-3ab \right] \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right) \\
& \Rightarrow LHS=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Hence, Proved.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
