
$2{\tan ^{ - 1}}\left( { - 3} \right)$ is equal to
$\left( a \right) - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right)$
$\left( b \right) - \pi + {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right)$
$\left( c \right)\dfrac{{ - \pi }}{2} + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
$\left( d \right){\cot ^{ - 1}}\left( {\dfrac{4}{3}} \right)$
Answer
563.7k+ views
Hint: In this particular question use the concept that ${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x,$ ${\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ and also use that ${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ so use these concepts to reach the solution of the question.
Complete step by step answer:
Now we have to find out the value of:
$2{\tan ^{ - 1}}\left( { - 3} \right)$
Now as we know that ${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x,$so use this property in the above equation we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3$.......... (1)
Now we also know that, ${\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right),x \geqslant 0$, so use this property in the above equation we have,
So as we see that in the above equation x = 3, so we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\cos ^{ - 1}}\left( {\dfrac{{1 - {3^2}}}{{1 + {3^2}}}} \right)$
Now simplify it we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\cos ^{ - 1}}\left( {\dfrac{{ - 8}}{{10}}} \right) = - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right)$
Now as we know that ${\cos ^{ - 1}}\left( { - x} \right) = \pi - {\cos ^{ - 1}}x,x \in \left[ { - 1,1} \right]$
So in the above equation x = -4/5, therefore, $x \in \left[ { - 1,1} \right]$ so we have,
$ \Rightarrow - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right) = - \left( {\pi - {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right)$
$ \Rightarrow - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right) = - \pi + {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right)$
Now as we know that $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$ so use this property in equation (1) we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\tan ^{ - 1}}\left( {\dfrac{6}{{1 - {3^2}}}} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{ - 3}}{4}} \right)$
Now as we know that ${\tan ^{ - 1}}x = {\cot ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ so apply this in the above equation we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{ - 3}}{4}} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$................ (2)
Now as we know that ${\cot ^{ - 1}}\left( { - x} \right) = - {\cot ^{ - 1}}x$ so we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \left( { - {{\cot }^{ - 1}}\left( {\dfrac{4}{3}} \right)} \right) = {\cot ^{ - 1}}\left( {\dfrac{4}{3}} \right)$
Now as we know that ${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ so we have,
$ \Rightarrow {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) - \dfrac{\pi }{2} = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
$ \Rightarrow - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \dfrac{\pi }{2} + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
So from equation (2) we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \dfrac{\pi }{2} + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
Hence options (a), (b), (c), and (d) all options are correct.
Note: Whenever we face such types of questions the key concept we have to remember is always recall all the basic inverse trigonometric identities such as, $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$, ${\tan ^{ - 1}}x = {\cot ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ and rest of the equations which are useful to solve this problem are stated above, so simply use them as above we will get the required answer.
Complete step by step answer:
Now we have to find out the value of:
$2{\tan ^{ - 1}}\left( { - 3} \right)$
Now as we know that ${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x,$so use this property in the above equation we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3$.......... (1)
Now we also know that, ${\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right),x \geqslant 0$, so use this property in the above equation we have,
So as we see that in the above equation x = 3, so we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\cos ^{ - 1}}\left( {\dfrac{{1 - {3^2}}}{{1 + {3^2}}}} \right)$
Now simplify it we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\cos ^{ - 1}}\left( {\dfrac{{ - 8}}{{10}}} \right) = - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right)$
Now as we know that ${\cos ^{ - 1}}\left( { - x} \right) = \pi - {\cos ^{ - 1}}x,x \in \left[ { - 1,1} \right]$
So in the above equation x = -4/5, therefore, $x \in \left[ { - 1,1} \right]$ so we have,
$ \Rightarrow - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right) = - \left( {\pi - {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right)$
$ \Rightarrow - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right) = - \pi + {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right)$
Now as we know that $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$ so use this property in equation (1) we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\tan ^{ - 1}}\left( {\dfrac{6}{{1 - {3^2}}}} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{ - 3}}{4}} \right)$
Now as we know that ${\tan ^{ - 1}}x = {\cot ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ so apply this in the above equation we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{ - 3}}{4}} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$................ (2)
Now as we know that ${\cot ^{ - 1}}\left( { - x} \right) = - {\cot ^{ - 1}}x$ so we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \left( { - {{\cot }^{ - 1}}\left( {\dfrac{4}{3}} \right)} \right) = {\cot ^{ - 1}}\left( {\dfrac{4}{3}} \right)$
Now as we know that ${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ so we have,
$ \Rightarrow {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) - \dfrac{\pi }{2} = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
$ \Rightarrow - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \dfrac{\pi }{2} + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
So from equation (2) we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \dfrac{\pi }{2} + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
Hence options (a), (b), (c), and (d) all options are correct.
Note: Whenever we face such types of questions the key concept we have to remember is always recall all the basic inverse trigonometric identities such as, $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$, ${\tan ^{ - 1}}x = {\cot ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ and rest of the equations which are useful to solve this problem are stated above, so simply use them as above we will get the required answer.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

