
$2{\tan ^{ - 1}}\left( { - 3} \right)$ is equal to
$\left( a \right) - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right)$
$\left( b \right) - \pi + {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right)$
$\left( c \right)\dfrac{{ - \pi }}{2} + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
$\left( d \right){\cot ^{ - 1}}\left( {\dfrac{4}{3}} \right)$
Answer
556.2k+ views
Hint: In this particular question use the concept that ${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x,$ ${\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ and also use that ${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ so use these concepts to reach the solution of the question.
Complete step by step answer:
Now we have to find out the value of:
$2{\tan ^{ - 1}}\left( { - 3} \right)$
Now as we know that ${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x,$so use this property in the above equation we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3$.......... (1)
Now we also know that, ${\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right),x \geqslant 0$, so use this property in the above equation we have,
So as we see that in the above equation x = 3, so we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\cos ^{ - 1}}\left( {\dfrac{{1 - {3^2}}}{{1 + {3^2}}}} \right)$
Now simplify it we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\cos ^{ - 1}}\left( {\dfrac{{ - 8}}{{10}}} \right) = - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right)$
Now as we know that ${\cos ^{ - 1}}\left( { - x} \right) = \pi - {\cos ^{ - 1}}x,x \in \left[ { - 1,1} \right]$
So in the above equation x = -4/5, therefore, $x \in \left[ { - 1,1} \right]$ so we have,
$ \Rightarrow - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right) = - \left( {\pi - {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right)$
$ \Rightarrow - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right) = - \pi + {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right)$
Now as we know that $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$ so use this property in equation (1) we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\tan ^{ - 1}}\left( {\dfrac{6}{{1 - {3^2}}}} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{ - 3}}{4}} \right)$
Now as we know that ${\tan ^{ - 1}}x = {\cot ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ so apply this in the above equation we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{ - 3}}{4}} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$................ (2)
Now as we know that ${\cot ^{ - 1}}\left( { - x} \right) = - {\cot ^{ - 1}}x$ so we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \left( { - {{\cot }^{ - 1}}\left( {\dfrac{4}{3}} \right)} \right) = {\cot ^{ - 1}}\left( {\dfrac{4}{3}} \right)$
Now as we know that ${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ so we have,
$ \Rightarrow {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) - \dfrac{\pi }{2} = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
$ \Rightarrow - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \dfrac{\pi }{2} + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
So from equation (2) we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \dfrac{\pi }{2} + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
Hence options (a), (b), (c), and (d) all options are correct.
Note: Whenever we face such types of questions the key concept we have to remember is always recall all the basic inverse trigonometric identities such as, $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$, ${\tan ^{ - 1}}x = {\cot ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ and rest of the equations which are useful to solve this problem are stated above, so simply use them as above we will get the required answer.
Complete step by step answer:
Now we have to find out the value of:
$2{\tan ^{ - 1}}\left( { - 3} \right)$
Now as we know that ${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x,$so use this property in the above equation we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3$.......... (1)
Now we also know that, ${\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right),x \geqslant 0$, so use this property in the above equation we have,
So as we see that in the above equation x = 3, so we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\cos ^{ - 1}}\left( {\dfrac{{1 - {3^2}}}{{1 + {3^2}}}} \right)$
Now simplify it we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\cos ^{ - 1}}\left( {\dfrac{{ - 8}}{{10}}} \right) = - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right)$
Now as we know that ${\cos ^{ - 1}}\left( { - x} \right) = \pi - {\cos ^{ - 1}}x,x \in \left[ { - 1,1} \right]$
So in the above equation x = -4/5, therefore, $x \in \left[ { - 1,1} \right]$ so we have,
$ \Rightarrow - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right) = - \left( {\pi - {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right)$
$ \Rightarrow - {\cos ^{ - 1}}\left( {\dfrac{{ - 4}}{5}} \right) = - \pi + {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right)$
Now as we know that $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$ so use this property in equation (1) we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - 2{\tan ^{ - 1}}3 = - {\tan ^{ - 1}}\left( {\dfrac{6}{{1 - {3^2}}}} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{ - 3}}{4}} \right)$
Now as we know that ${\tan ^{ - 1}}x = {\cot ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ so apply this in the above equation we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{ - 3}}{4}} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$................ (2)
Now as we know that ${\cot ^{ - 1}}\left( { - x} \right) = - {\cot ^{ - 1}}x$ so we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \left( { - {{\cot }^{ - 1}}\left( {\dfrac{4}{3}} \right)} \right) = {\cot ^{ - 1}}\left( {\dfrac{4}{3}} \right)$
Now as we know that ${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ so we have,
$ \Rightarrow {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) - \dfrac{\pi }{2} = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
$ \Rightarrow - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \dfrac{\pi }{2} + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
So from equation (2) we have,
$ \Rightarrow 2{\tan ^{ - 1}}\left( { - 3} \right) = - {\cot ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right) = - \dfrac{\pi }{2} + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$
Hence options (a), (b), (c), and (d) all options are correct.
Note: Whenever we face such types of questions the key concept we have to remember is always recall all the basic inverse trigonometric identities such as, $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$, ${\tan ^{ - 1}}x = {\cot ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ and rest of the equations which are useful to solve this problem are stated above, so simply use them as above we will get the required answer.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

