
2n boys are randomly divided into two subgroups containing n boys each .The probability that the two tallest boys are in different groups is
A) \[\dfrac{{\text{n}}}{{2{\text{n}} - 1}}\]
b) \[\dfrac{{{\text{n}} - 1}}{{2{\text{n}} - 1}}\]
C) \[\dfrac{{2{\text{n}} - 1}}{{4{{\text{n}}^2}}}\]
Answer
571.2k+ views
Hint:
Here, we will use the concept of combination to solve the question. We have to divide the total number of boys into two equal groups. We will then subtract 1 boy from each group so that we separate the two tall boys and calculate the ways to divide remaining boys. Then we will use the formula of combination to find the answer.
Formula used: We will use the formula of combination, \[^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n}} - {\text{r}}} \right)!}}\], where \[{\text{r}}\] is the number of objects selected from \[{\text{n}}\] number of set.
Complete step by step solution:
It is given that 2n boys are divided into two equal groups, that means there will be n boys in each group.
So that the total ways of dividing 2n boys will be \[^{2{\text{n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}\].
As we have to find the probability of two tall boys, so we will leave two boys and find the number of ways to divide remaining boys.
After leaving the tall boys there will be \[2{\text{n}} - 2\] boys which are left to be divided in the subgroups.
The number of ways in which \[2{\text{n}} - 2\] boys can be divided from the 2 subgroups will be given by \[^{2{\text{n - 2}}}{{\text{C}}_{\text{n}}}{ \cdot ^{{\text{n - 1}}}}{{\text{C}}_{\text{n}}}\].
The two tall boys can be divided in two groups in 2 ways.
Now we will divide the two tall boys in different groups in \[\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}}\] ways.
Now we will solve the above expression using the formula of combination, \[^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n}} - {\text{r}}} \right)!}}\].
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {2{\text{n}} - 2 - \left( {{\text{n}} - 1} \right)} \right)!}} \cdot \dfrac{{\left( {{\text{n}} - 1} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1 - \left( {{\text{n}} - 1} \right)} \right)!}} \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {2{\text{n}} - {\text{n}}} \right)!}} \cdot \dfrac{{\left( {\text{n}} \right)!}}{{\left( {\text{n}} \right)!\left( {{\text{n}} - {\text{n}}} \right)!}}}}\\ = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot \dfrac{1}{{0!}} \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {\text{n}} \right)!}} \cdot \dfrac{1}{{0!}}}}\end{array}\]
Simplifying the above equation, we get
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot 1 \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {\text{n}} \right)!}} \cdot 1}}\\ = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot 1 \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)\left( {2{\text{n}} - 1} \right)\left( {2{\text{n}} - 2} \right)!}}{{{\text{n}}\left( {{\text{n}} - 1} \right)!\left( {\text{n}} \right)\left( {{\text{n}} - 1} \right)!}} \cdot 1}}\end{array}\]
Again simplifying the equation, we get
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{2 \cdot {\text{n}} \cdot {\text{n}}}}{{\left( {2{\text{n}}} \right)\left( {2{\text{n}} - 1} \right)}}\\ = \dfrac{{\text{n}}}{{\left( {2{\text{n}} - 1} \right)}}\end{array}\]
\[\therefore\] The correct answer is option A.
Note:
Here, we might make a mistake when calculating the factorial. It is important for us to understand that first we need to separate the tall boys to find the ways to divide the rest of the boys. If we find the number of ways to divide boys without separating tall boys, so there is a possibility that they might fall in the same group. So, we will not get the desired answer.
Here, we will use the concept of combination to solve the question. We have to divide the total number of boys into two equal groups. We will then subtract 1 boy from each group so that we separate the two tall boys and calculate the ways to divide remaining boys. Then we will use the formula of combination to find the answer.
Formula used: We will use the formula of combination, \[^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n}} - {\text{r}}} \right)!}}\], where \[{\text{r}}\] is the number of objects selected from \[{\text{n}}\] number of set.
Complete step by step solution:
It is given that 2n boys are divided into two equal groups, that means there will be n boys in each group.
So that the total ways of dividing 2n boys will be \[^{2{\text{n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}\].
As we have to find the probability of two tall boys, so we will leave two boys and find the number of ways to divide remaining boys.
After leaving the tall boys there will be \[2{\text{n}} - 2\] boys which are left to be divided in the subgroups.
The number of ways in which \[2{\text{n}} - 2\] boys can be divided from the 2 subgroups will be given by \[^{2{\text{n - 2}}}{{\text{C}}_{\text{n}}}{ \cdot ^{{\text{n - 1}}}}{{\text{C}}_{\text{n}}}\].
The two tall boys can be divided in two groups in 2 ways.
Now we will divide the two tall boys in different groups in \[\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}}\] ways.
Now we will solve the above expression using the formula of combination, \[^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n}} - {\text{r}}} \right)!}}\].
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {2{\text{n}} - 2 - \left( {{\text{n}} - 1} \right)} \right)!}} \cdot \dfrac{{\left( {{\text{n}} - 1} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1 - \left( {{\text{n}} - 1} \right)} \right)!}} \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {2{\text{n}} - {\text{n}}} \right)!}} \cdot \dfrac{{\left( {\text{n}} \right)!}}{{\left( {\text{n}} \right)!\left( {{\text{n}} - {\text{n}}} \right)!}}}}\\ = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot \dfrac{1}{{0!}} \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {\text{n}} \right)!}} \cdot \dfrac{1}{{0!}}}}\end{array}\]
Simplifying the above equation, we get
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot 1 \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {\text{n}} \right)!}} \cdot 1}}\\ = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot 1 \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)\left( {2{\text{n}} - 1} \right)\left( {2{\text{n}} - 2} \right)!}}{{{\text{n}}\left( {{\text{n}} - 1} \right)!\left( {\text{n}} \right)\left( {{\text{n}} - 1} \right)!}} \cdot 1}}\end{array}\]
Again simplifying the equation, we get
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{2 \cdot {\text{n}} \cdot {\text{n}}}}{{\left( {2{\text{n}}} \right)\left( {2{\text{n}} - 1} \right)}}\\ = \dfrac{{\text{n}}}{{\left( {2{\text{n}} - 1} \right)}}\end{array}\]
\[\therefore\] The correct answer is option A.
Note:
Here, we might make a mistake when calculating the factorial. It is important for us to understand that first we need to separate the tall boys to find the ways to divide the rest of the boys. If we find the number of ways to divide boys without separating tall boys, so there is a possibility that they might fall in the same group. So, we will not get the desired answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

