
1.If \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\] , then prove that \[\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{{{\left( {1 + x} \right)}^2}}}(x \ne y)\].
2. If \[\cos y = x.\cos (a + y)\],then prove that \[\dfrac{{dy}}{{dx}} = \dfrac{{{{\cos }^2}\left( {a + y} \right)}}{{\sin a}}\].
Answer
507.6k+ views
Hint:
It’s obvious that we have to perform differentiation in this solution. First we’ll try to seperate the independent variable that is x and the dependent variable that is y. Then we’ll perform differentiation. If we can’t separate the variables then we’ll use the product rule of differentiation.
Complete step by step solution:
1. \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Formula used:
1. \[{a^2} - {b^2} = (a + b)(a - b)\]
2. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
Given that,
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
\[ \Rightarrow x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Squaring both sides,
\[
\Rightarrow {x^2}\left( {1 + y} \right) = {\left( { - y} \right)^2}(1 + x) \\
\Rightarrow {x^2}\left( {1 + y} \right) = {y^2}(1 + x) \\
\Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x \\
\Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y \\
\]
Using formula , \[{a^2} - {b^2} = (a + b)(a - b)\]
\[ \Rightarrow (x + y)(x - y) = - {x^2}y + {y^2}x\]
\[ \Rightarrow (x + y)(x - y) = - xy(x - y)\] ..taking –xy common on right side.
\[
\Rightarrow x + y = - xy \\
\Rightarrow x = - xy - y \\
\Rightarrow x = - y(x + 1) \\
\Rightarrow y = \dfrac{{ - x}}{{x + 1}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{d}{{dx}}( - x) \times (x + 1) - \dfrac{d}{{dx}}(x + 1) \times ( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 1)(x + 1) - (1)( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - x - 1 + x}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{{{(x + 1)}^2}}}\]
Hence proved.
2. \[\cos y = x.\cos (a + y)\]
Formula used:
1. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
2. \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
Given that,
\[\cos y = x.\cos (a + y)\]
\[
\Rightarrow x = \dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow \dfrac{d}{{dx}}x = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow 1 = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dy}} \\
\Rightarrow 1 = \dfrac{d}{{dy}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dx}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)\dfrac{d}{{dy}}\cos y - (\cos y\dfrac{d}{{dy}}\cos (a + y))}}{{{{\left( {\cos \left( {a + y} \right)} \right)}^2}}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y))\dfrac{d}{{dy}}(a + y))}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y)))1}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) + \cos y\sin (a + y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\]
Rearranging the numerator terms
\[ \Rightarrow 1 = \left[ {\dfrac{{\sin (a + y)\cos y - \cos (a + y)\sin y}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}}\]
Using formula \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\sin ((a + y) - y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\sin a}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{{\cos }^2}(a + y)}}{{\sin a}} \\
\]
Hence proved.
Note:
Here the expectation from us was to differentiate. The same question can be asked from differential equation chapter. they’ll as constants one or two and ask to form differential equation. In such situation we need to focus on removing the constant from the equation by differentiating it.
It’s obvious that we have to perform differentiation in this solution. First we’ll try to seperate the independent variable that is x and the dependent variable that is y. Then we’ll perform differentiation. If we can’t separate the variables then we’ll use the product rule of differentiation.
Complete step by step solution:
1. \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Formula used:
1. \[{a^2} - {b^2} = (a + b)(a - b)\]
2. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
Given that,
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
\[ \Rightarrow x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Squaring both sides,
\[
\Rightarrow {x^2}\left( {1 + y} \right) = {\left( { - y} \right)^2}(1 + x) \\
\Rightarrow {x^2}\left( {1 + y} \right) = {y^2}(1 + x) \\
\Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x \\
\Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y \\
\]
Using formula , \[{a^2} - {b^2} = (a + b)(a - b)\]
\[ \Rightarrow (x + y)(x - y) = - {x^2}y + {y^2}x\]
\[ \Rightarrow (x + y)(x - y) = - xy(x - y)\] ..taking –xy common on right side.
\[
\Rightarrow x + y = - xy \\
\Rightarrow x = - xy - y \\
\Rightarrow x = - y(x + 1) \\
\Rightarrow y = \dfrac{{ - x}}{{x + 1}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{d}{{dx}}( - x) \times (x + 1) - \dfrac{d}{{dx}}(x + 1) \times ( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 1)(x + 1) - (1)( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - x - 1 + x}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{{{(x + 1)}^2}}}\]
Hence proved.
2. \[\cos y = x.\cos (a + y)\]
Formula used:
1. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
2. \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
Given that,
\[\cos y = x.\cos (a + y)\]
\[
\Rightarrow x = \dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow \dfrac{d}{{dx}}x = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow 1 = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dy}} \\
\Rightarrow 1 = \dfrac{d}{{dy}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dx}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)\dfrac{d}{{dy}}\cos y - (\cos y\dfrac{d}{{dy}}\cos (a + y))}}{{{{\left( {\cos \left( {a + y} \right)} \right)}^2}}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y))\dfrac{d}{{dy}}(a + y))}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y)))1}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) + \cos y\sin (a + y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\]
Rearranging the numerator terms
\[ \Rightarrow 1 = \left[ {\dfrac{{\sin (a + y)\cos y - \cos (a + y)\sin y}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}}\]
Using formula \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\sin ((a + y) - y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\sin a}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{{\cos }^2}(a + y)}}{{\sin a}} \\
\]
Hence proved.
Note:
Here the expectation from us was to differentiate. The same question can be asked from differential equation chapter. they’ll as constants one or two and ask to form differential equation. In such situation we need to focus on removing the constant from the equation by differentiating it.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
