
1.If \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\] , then prove that \[\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{{{\left( {1 + x} \right)}^2}}}(x \ne y)\].
2. If \[\cos y = x.\cos (a + y)\],then prove that \[\dfrac{{dy}}{{dx}} = \dfrac{{{{\cos }^2}\left( {a + y} \right)}}{{\sin a}}\].
Answer
588.6k+ views
Hint:
It’s obvious that we have to perform differentiation in this solution. First we’ll try to seperate the independent variable that is x and the dependent variable that is y. Then we’ll perform differentiation. If we can’t separate the variables then we’ll use the product rule of differentiation.
Complete step by step solution:
1. \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Formula used:
1. \[{a^2} - {b^2} = (a + b)(a - b)\]
2. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
Given that,
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
\[ \Rightarrow x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Squaring both sides,
\[
\Rightarrow {x^2}\left( {1 + y} \right) = {\left( { - y} \right)^2}(1 + x) \\
\Rightarrow {x^2}\left( {1 + y} \right) = {y^2}(1 + x) \\
\Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x \\
\Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y \\
\]
Using formula , \[{a^2} - {b^2} = (a + b)(a - b)\]
\[ \Rightarrow (x + y)(x - y) = - {x^2}y + {y^2}x\]
\[ \Rightarrow (x + y)(x - y) = - xy(x - y)\] ..taking –xy common on right side.
\[
\Rightarrow x + y = - xy \\
\Rightarrow x = - xy - y \\
\Rightarrow x = - y(x + 1) \\
\Rightarrow y = \dfrac{{ - x}}{{x + 1}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{d}{{dx}}( - x) \times (x + 1) - \dfrac{d}{{dx}}(x + 1) \times ( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 1)(x + 1) - (1)( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - x - 1 + x}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{{{(x + 1)}^2}}}\]
Hence proved.
2. \[\cos y = x.\cos (a + y)\]
Formula used:
1. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
2. \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
Given that,
\[\cos y = x.\cos (a + y)\]
\[
\Rightarrow x = \dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow \dfrac{d}{{dx}}x = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow 1 = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dy}} \\
\Rightarrow 1 = \dfrac{d}{{dy}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dx}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)\dfrac{d}{{dy}}\cos y - (\cos y\dfrac{d}{{dy}}\cos (a + y))}}{{{{\left( {\cos \left( {a + y} \right)} \right)}^2}}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y))\dfrac{d}{{dy}}(a + y))}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y)))1}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) + \cos y\sin (a + y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\]
Rearranging the numerator terms
\[ \Rightarrow 1 = \left[ {\dfrac{{\sin (a + y)\cos y - \cos (a + y)\sin y}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}}\]
Using formula \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\sin ((a + y) - y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\sin a}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{{\cos }^2}(a + y)}}{{\sin a}} \\
\]
Hence proved.
Note:
Here the expectation from us was to differentiate. The same question can be asked from differential equation chapter. they’ll as constants one or two and ask to form differential equation. In such situation we need to focus on removing the constant from the equation by differentiating it.
It’s obvious that we have to perform differentiation in this solution. First we’ll try to seperate the independent variable that is x and the dependent variable that is y. Then we’ll perform differentiation. If we can’t separate the variables then we’ll use the product rule of differentiation.
Complete step by step solution:
1. \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Formula used:
1. \[{a^2} - {b^2} = (a + b)(a - b)\]
2. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
Given that,
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
\[ \Rightarrow x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Squaring both sides,
\[
\Rightarrow {x^2}\left( {1 + y} \right) = {\left( { - y} \right)^2}(1 + x) \\
\Rightarrow {x^2}\left( {1 + y} \right) = {y^2}(1 + x) \\
\Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x \\
\Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y \\
\]
Using formula , \[{a^2} - {b^2} = (a + b)(a - b)\]
\[ \Rightarrow (x + y)(x - y) = - {x^2}y + {y^2}x\]
\[ \Rightarrow (x + y)(x - y) = - xy(x - y)\] ..taking –xy common on right side.
\[
\Rightarrow x + y = - xy \\
\Rightarrow x = - xy - y \\
\Rightarrow x = - y(x + 1) \\
\Rightarrow y = \dfrac{{ - x}}{{x + 1}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{d}{{dx}}( - x) \times (x + 1) - \dfrac{d}{{dx}}(x + 1) \times ( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 1)(x + 1) - (1)( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - x - 1 + x}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{{{(x + 1)}^2}}}\]
Hence proved.
2. \[\cos y = x.\cos (a + y)\]
Formula used:
1. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
2. \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
Given that,
\[\cos y = x.\cos (a + y)\]
\[
\Rightarrow x = \dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow \dfrac{d}{{dx}}x = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow 1 = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dy}} \\
\Rightarrow 1 = \dfrac{d}{{dy}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dx}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)\dfrac{d}{{dy}}\cos y - (\cos y\dfrac{d}{{dy}}\cos (a + y))}}{{{{\left( {\cos \left( {a + y} \right)} \right)}^2}}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y))\dfrac{d}{{dy}}(a + y))}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y)))1}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) + \cos y\sin (a + y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\]
Rearranging the numerator terms
\[ \Rightarrow 1 = \left[ {\dfrac{{\sin (a + y)\cos y - \cos (a + y)\sin y}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}}\]
Using formula \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\sin ((a + y) - y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\sin a}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{{\cos }^2}(a + y)}}{{\sin a}} \\
\]
Hence proved.
Note:
Here the expectation from us was to differentiate. The same question can be asked from differential equation chapter. they’ll as constants one or two and ask to form differential equation. In such situation we need to focus on removing the constant from the equation by differentiating it.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

