
1.If \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\] , then prove that \[\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{{{\left( {1 + x} \right)}^2}}}(x \ne y)\].
2. If \[\cos y = x.\cos (a + y)\],then prove that \[\dfrac{{dy}}{{dx}} = \dfrac{{{{\cos }^2}\left( {a + y} \right)}}{{\sin a}}\].
Answer
574.8k+ views
Hint:
It’s obvious that we have to perform differentiation in this solution. First we’ll try to seperate the independent variable that is x and the dependent variable that is y. Then we’ll perform differentiation. If we can’t separate the variables then we’ll use the product rule of differentiation.
Complete step by step solution:
1. \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Formula used:
1. \[{a^2} - {b^2} = (a + b)(a - b)\]
2. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
Given that,
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
\[ \Rightarrow x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Squaring both sides,
\[
\Rightarrow {x^2}\left( {1 + y} \right) = {\left( { - y} \right)^2}(1 + x) \\
\Rightarrow {x^2}\left( {1 + y} \right) = {y^2}(1 + x) \\
\Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x \\
\Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y \\
\]
Using formula , \[{a^2} - {b^2} = (a + b)(a - b)\]
\[ \Rightarrow (x + y)(x - y) = - {x^2}y + {y^2}x\]
\[ \Rightarrow (x + y)(x - y) = - xy(x - y)\] ..taking –xy common on right side.
\[
\Rightarrow x + y = - xy \\
\Rightarrow x = - xy - y \\
\Rightarrow x = - y(x + 1) \\
\Rightarrow y = \dfrac{{ - x}}{{x + 1}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{d}{{dx}}( - x) \times (x + 1) - \dfrac{d}{{dx}}(x + 1) \times ( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 1)(x + 1) - (1)( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - x - 1 + x}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{{{(x + 1)}^2}}}\]
Hence proved.
2. \[\cos y = x.\cos (a + y)\]
Formula used:
1. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
2. \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
Given that,
\[\cos y = x.\cos (a + y)\]
\[
\Rightarrow x = \dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow \dfrac{d}{{dx}}x = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow 1 = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dy}} \\
\Rightarrow 1 = \dfrac{d}{{dy}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dx}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)\dfrac{d}{{dy}}\cos y - (\cos y\dfrac{d}{{dy}}\cos (a + y))}}{{{{\left( {\cos \left( {a + y} \right)} \right)}^2}}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y))\dfrac{d}{{dy}}(a + y))}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y)))1}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) + \cos y\sin (a + y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\]
Rearranging the numerator terms
\[ \Rightarrow 1 = \left[ {\dfrac{{\sin (a + y)\cos y - \cos (a + y)\sin y}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}}\]
Using formula \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\sin ((a + y) - y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\sin a}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{{\cos }^2}(a + y)}}{{\sin a}} \\
\]
Hence proved.
Note:
Here the expectation from us was to differentiate. The same question can be asked from differential equation chapter. they’ll as constants one or two and ask to form differential equation. In such situation we need to focus on removing the constant from the equation by differentiating it.
It’s obvious that we have to perform differentiation in this solution. First we’ll try to seperate the independent variable that is x and the dependent variable that is y. Then we’ll perform differentiation. If we can’t separate the variables then we’ll use the product rule of differentiation.
Complete step by step solution:
1. \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Formula used:
1. \[{a^2} - {b^2} = (a + b)(a - b)\]
2. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
Given that,
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
\[ \Rightarrow x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Squaring both sides,
\[
\Rightarrow {x^2}\left( {1 + y} \right) = {\left( { - y} \right)^2}(1 + x) \\
\Rightarrow {x^2}\left( {1 + y} \right) = {y^2}(1 + x) \\
\Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x \\
\Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y \\
\]
Using formula , \[{a^2} - {b^2} = (a + b)(a - b)\]
\[ \Rightarrow (x + y)(x - y) = - {x^2}y + {y^2}x\]
\[ \Rightarrow (x + y)(x - y) = - xy(x - y)\] ..taking –xy common on right side.
\[
\Rightarrow x + y = - xy \\
\Rightarrow x = - xy - y \\
\Rightarrow x = - y(x + 1) \\
\Rightarrow y = \dfrac{{ - x}}{{x + 1}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{d}{{dx}}( - x) \times (x + 1) - \dfrac{d}{{dx}}(x + 1) \times ( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 1)(x + 1) - (1)( - x)}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - x - 1 + x}}{{{{(x + 1)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{{{(x + 1)}^2}}}\]
Hence proved.
2. \[\cos y = x.\cos (a + y)\]
Formula used:
1. \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
2. \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
Given that,
\[\cos y = x.\cos (a + y)\]
\[
\Rightarrow x = \dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow \dfrac{d}{{dx}}x = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}} \\
\Rightarrow 1 = \dfrac{d}{{dx}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dy}} \\
\Rightarrow 1 = \dfrac{d}{{dy}}\dfrac{{\cos y}}{{\cos (a + y)}}\dfrac{{dy}}{{dx}} \\
\]
Using quotient’s rule, \[\dfrac{u}{v} = \dfrac{{u'v - v'u}}{{{v^2}}}\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)\dfrac{d}{{dy}}\cos y - (\cos y\dfrac{d}{{dy}}\cos (a + y))}}{{{{\left( {\cos \left( {a + y} \right)} \right)}^2}}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y))\dfrac{d}{{dy}}(a + y))}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) - (\cos y( - \sin (a + y)))1}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\cos (a + y)( - \sin y) + \cos y\sin (a + y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\]
Rearranging the numerator terms
\[ \Rightarrow 1 = \left[ {\dfrac{{\sin (a + y)\cos y - \cos (a + y)\sin y}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}}\]
Using formula \[\sin (x - y) = \sin x.\cos y - \cos x.\sin y\]
\[
\Rightarrow 1 = \left[ {\dfrac{{\sin ((a + y) - y)}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow 1 = \left[ {\dfrac{{\sin a}}{{{{\cos }^2}(a + y)}}} \right]\dfrac{{dy}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{{\cos }^2}(a + y)}}{{\sin a}} \\
\]
Hence proved.
Note:
Here the expectation from us was to differentiate. The same question can be asked from differential equation chapter. they’ll as constants one or two and ask to form differential equation. In such situation we need to focus on removing the constant from the equation by differentiating it.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is virtual and erect image ?

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Write any three uses of polaroids class 12 physics CBSE

