
Zinc granules are added in excess to 500 ml of 1.0 M nickel nitrate solution at 25℃ until the equilibrium is reached. If the standard reduction potentials of \[Z{{n}^{2+}}/Zn\] and \[N{{i}^{2+}}/Ni\]are -0.75 and -0.24 volt respectively, find out the concentration of \[N{{i}^{2+}}\] ions in solution at equilibrium.
Answer
600.3k+ views
Hint: The reaction between the zinc granules and the nickel nitrate solution is an example of redox reaction., where zinc is oxidized while nickel gets reduced. The chemical reaction is given as:
\[Z{{n}_{(s)}}+Ni{{(N{{O}_{3}})}_{2}}_{(aq)}\to Zn{{(N{{O}_{3}})}_{2}}_{(aq)}+N{{i}_{(s)}}\]
Complete step by step solution:
We have been given in the question that the:
Volume of nickel nitrate solution = 500 ml
Standard reduction potentials of \[Z{{n}^{2+}}/Zn\] = -0.75 V
Standard reduction potentials of \[N{{i}^{2+}}/Ni\] = -0.24 V
The net redox reaction can be given as:
\[\begin{align}
& Zn+N{{i}^{2+}}\to Z{{n}^{2+}}+Ni \\
& initially\,\,\,\,\,\,\,\,\,\,\,500\,\,\,\,\,\,\,\,\,\,\,0 \\
& at\,equilibrium\,\,\,\,\,\,\,\,\,\,(500-a) \\
\end{align}\]
\[{{E}_{cell}}={{E}_{OP(Zn/Z{{n}^{2+}})}}+{{E}_{RP(N{{i}^{2+}}/Ni)}}\]
\[{{E}_{cell}}={{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}+\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
We know that at equilibrium, \[{{E}_{cell}}=0\]
Therefore, we can write:
\[0={{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}+\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
On rearranging, we get:
\[{{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}=-\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
\[{{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}=-\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
\[\dfrac{0.51\times 2}{0.059}=\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
Taking antilog on both sides,
\[\begin{align}
& \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}=\text{antilog}\left( \dfrac{0.51\times 2}{0.059} \right) \\
& =5.15\times {{10}^{-18}} \\
\end{align}\]
Now, from the ratio of concentration of can be written as:
\[\dfrac{a}{(500-a)}=5.15\times {{10}^{-18}}\]
Since’ a’ is very small we can write, \[500-a\approx 500\].
\[a=500\times 5.15\times {{10}^{-18}}\]
The concentration of nickel at equilibrium can be calculated as
\[\begin{align}
& \left[ N{{i}^{2+}} \right]=\dfrac{a}{V}=\dfrac{500\times 5.15\times {{10}^{-18}}}{500} \\
& =5.15\times {{10}^{-18}}\,M \\
\end{align}\]
Therefore, the concentration of nickel at equilibrium \[5.15\times {{10}^{-18}}\]M.
Note: If the concentrations of the reaction, then there will be another byproduct formed, ammonium nitrate. Hence, it is a concentration dependent reaction and the equation can be given as:
\[4Zn+10HN{{O}_{3}}(conc.)\to 4Zn{{(N{{O}_{3}})}_{2}}+N{{H}_{4}}N{{O}_{3}}+3{{H}_{2}}O\]
\[Z{{n}_{(s)}}+Ni{{(N{{O}_{3}})}_{2}}_{(aq)}\to Zn{{(N{{O}_{3}})}_{2}}_{(aq)}+N{{i}_{(s)}}\]
Complete step by step solution:
We have been given in the question that the:
Volume of nickel nitrate solution = 500 ml
Standard reduction potentials of \[Z{{n}^{2+}}/Zn\] = -0.75 V
Standard reduction potentials of \[N{{i}^{2+}}/Ni\] = -0.24 V
The net redox reaction can be given as:
\[\begin{align}
& Zn+N{{i}^{2+}}\to Z{{n}^{2+}}+Ni \\
& initially\,\,\,\,\,\,\,\,\,\,\,500\,\,\,\,\,\,\,\,\,\,\,0 \\
& at\,equilibrium\,\,\,\,\,\,\,\,\,\,(500-a) \\
\end{align}\]
\[{{E}_{cell}}={{E}_{OP(Zn/Z{{n}^{2+}})}}+{{E}_{RP(N{{i}^{2+}}/Ni)}}\]
\[{{E}_{cell}}={{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}+\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
We know that at equilibrium, \[{{E}_{cell}}=0\]
Therefore, we can write:
\[0={{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}+\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
On rearranging, we get:
\[{{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}=-\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
\[{{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}=-\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
\[\dfrac{0.51\times 2}{0.059}=\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
Taking antilog on both sides,
\[\begin{align}
& \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}=\text{antilog}\left( \dfrac{0.51\times 2}{0.059} \right) \\
& =5.15\times {{10}^{-18}} \\
\end{align}\]
Now, from the ratio of concentration of can be written as:
\[\dfrac{a}{(500-a)}=5.15\times {{10}^{-18}}\]
Since’ a’ is very small we can write, \[500-a\approx 500\].
\[a=500\times 5.15\times {{10}^{-18}}\]
The concentration of nickel at equilibrium can be calculated as
\[\begin{align}
& \left[ N{{i}^{2+}} \right]=\dfrac{a}{V}=\dfrac{500\times 5.15\times {{10}^{-18}}}{500} \\
& =5.15\times {{10}^{-18}}\,M \\
\end{align}\]
Therefore, the concentration of nickel at equilibrium \[5.15\times {{10}^{-18}}\]M.
Note: If the concentrations of the reaction, then there will be another byproduct formed, ammonium nitrate. Hence, it is a concentration dependent reaction and the equation can be given as:
\[4Zn+10HN{{O}_{3}}(conc.)\to 4Zn{{(N{{O}_{3}})}_{2}}+N{{H}_{4}}N{{O}_{3}}+3{{H}_{2}}O\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

