
Zinc granules are added in excess to 500 ml of 1.0 M nickel nitrate solution at 25℃ until the equilibrium is reached. If the standard reduction potentials of \[Z{{n}^{2+}}/Zn\] and \[N{{i}^{2+}}/Ni\]are -0.75 and -0.24 volt respectively, find out the concentration of \[N{{i}^{2+}}\] ions in solution at equilibrium.
Answer
589.2k+ views
Hint: The reaction between the zinc granules and the nickel nitrate solution is an example of redox reaction., where zinc is oxidized while nickel gets reduced. The chemical reaction is given as:
\[Z{{n}_{(s)}}+Ni{{(N{{O}_{3}})}_{2}}_{(aq)}\to Zn{{(N{{O}_{3}})}_{2}}_{(aq)}+N{{i}_{(s)}}\]
Complete step by step solution:
We have been given in the question that the:
Volume of nickel nitrate solution = 500 ml
Standard reduction potentials of \[Z{{n}^{2+}}/Zn\] = -0.75 V
Standard reduction potentials of \[N{{i}^{2+}}/Ni\] = -0.24 V
The net redox reaction can be given as:
\[\begin{align}
& Zn+N{{i}^{2+}}\to Z{{n}^{2+}}+Ni \\
& initially\,\,\,\,\,\,\,\,\,\,\,500\,\,\,\,\,\,\,\,\,\,\,0 \\
& at\,equilibrium\,\,\,\,\,\,\,\,\,\,(500-a) \\
\end{align}\]
\[{{E}_{cell}}={{E}_{OP(Zn/Z{{n}^{2+}})}}+{{E}_{RP(N{{i}^{2+}}/Ni)}}\]
\[{{E}_{cell}}={{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}+\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
We know that at equilibrium, \[{{E}_{cell}}=0\]
Therefore, we can write:
\[0={{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}+\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
On rearranging, we get:
\[{{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}=-\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
\[{{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}=-\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
\[\dfrac{0.51\times 2}{0.059}=\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
Taking antilog on both sides,
\[\begin{align}
& \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}=\text{antilog}\left( \dfrac{0.51\times 2}{0.059} \right) \\
& =5.15\times {{10}^{-18}} \\
\end{align}\]
Now, from the ratio of concentration of can be written as:
\[\dfrac{a}{(500-a)}=5.15\times {{10}^{-18}}\]
Since’ a’ is very small we can write, \[500-a\approx 500\].
\[a=500\times 5.15\times {{10}^{-18}}\]
The concentration of nickel at equilibrium can be calculated as
\[\begin{align}
& \left[ N{{i}^{2+}} \right]=\dfrac{a}{V}=\dfrac{500\times 5.15\times {{10}^{-18}}}{500} \\
& =5.15\times {{10}^{-18}}\,M \\
\end{align}\]
Therefore, the concentration of nickel at equilibrium \[5.15\times {{10}^{-18}}\]M.
Note: If the concentrations of the reaction, then there will be another byproduct formed, ammonium nitrate. Hence, it is a concentration dependent reaction and the equation can be given as:
\[4Zn+10HN{{O}_{3}}(conc.)\to 4Zn{{(N{{O}_{3}})}_{2}}+N{{H}_{4}}N{{O}_{3}}+3{{H}_{2}}O\]
\[Z{{n}_{(s)}}+Ni{{(N{{O}_{3}})}_{2}}_{(aq)}\to Zn{{(N{{O}_{3}})}_{2}}_{(aq)}+N{{i}_{(s)}}\]
Complete step by step solution:
We have been given in the question that the:
Volume of nickel nitrate solution = 500 ml
Standard reduction potentials of \[Z{{n}^{2+}}/Zn\] = -0.75 V
Standard reduction potentials of \[N{{i}^{2+}}/Ni\] = -0.24 V
The net redox reaction can be given as:
\[\begin{align}
& Zn+N{{i}^{2+}}\to Z{{n}^{2+}}+Ni \\
& initially\,\,\,\,\,\,\,\,\,\,\,500\,\,\,\,\,\,\,\,\,\,\,0 \\
& at\,equilibrium\,\,\,\,\,\,\,\,\,\,(500-a) \\
\end{align}\]
\[{{E}_{cell}}={{E}_{OP(Zn/Z{{n}^{2+}})}}+{{E}_{RP(N{{i}^{2+}}/Ni)}}\]
\[{{E}_{cell}}={{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}+\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
We know that at equilibrium, \[{{E}_{cell}}=0\]
Therefore, we can write:
\[0={{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}+\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
On rearranging, we get:
\[{{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}=-\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
\[{{E}^{\circ }}_{OP(Zn/Z{{n}^{2+}})}+{{E}^{\circ }}_{RP(N{{i}^{2+}}/Ni)}=-\dfrac{0.059}{2}\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
\[\dfrac{0.51\times 2}{0.059}=\log \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}\]
Taking antilog on both sides,
\[\begin{align}
& \dfrac{\left[ N{{i}^{2+}} \right]}{\left[ Z{{n}^{2+}} \right]}=\text{antilog}\left( \dfrac{0.51\times 2}{0.059} \right) \\
& =5.15\times {{10}^{-18}} \\
\end{align}\]
Now, from the ratio of concentration of can be written as:
\[\dfrac{a}{(500-a)}=5.15\times {{10}^{-18}}\]
Since’ a’ is very small we can write, \[500-a\approx 500\].
\[a=500\times 5.15\times {{10}^{-18}}\]
The concentration of nickel at equilibrium can be calculated as
\[\begin{align}
& \left[ N{{i}^{2+}} \right]=\dfrac{a}{V}=\dfrac{500\times 5.15\times {{10}^{-18}}}{500} \\
& =5.15\times {{10}^{-18}}\,M \\
\end{align}\]
Therefore, the concentration of nickel at equilibrium \[5.15\times {{10}^{-18}}\]M.
Note: If the concentrations of the reaction, then there will be another byproduct formed, ammonium nitrate. Hence, it is a concentration dependent reaction and the equation can be given as:
\[4Zn+10HN{{O}_{3}}(conc.)\to 4Zn{{(N{{O}_{3}})}_{2}}+N{{H}_{4}}N{{O}_{3}}+3{{H}_{2}}O\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

