
How to do you find the volume of the parallelepiped with the adjacent edges $pq, pr\,and\,ps$ where \[p\left( {3,0,1} \right),{\text{ }}q\left( { - 1,2,5} \right),{\text{ }}r\left( {5,1, - 1} \right){\text{ }}and{\text{ }}s\left( {0,4,2} \right)\].
Answer
496.2k+ views
Hint: Parallelogram means an object having a parallel plane if the adjacent side of the parallelogram are given in the vectors as x, y and z. The volume of a parallelepiped determined by the vectors a, b, c (where a, b and c share the same initial point) is the magnitude of their scalar triple product. Then the volume of such a parallelogram can be calculated by taking the dot product of side x with the cross product of y and z.
Complete step by step answer:
Given data is as below: the coordinates of the sides of the parallelogram are given as –
\[p\left( {3,0,1} \right),{\text{ }}q\left( { - 1,2,5} \right),{\text{ }}r\left( {5,1, - 1} \right){\text{ }}and{\text{ }}s\left( {0,4,2} \right)\]
Now, we will find the three vectors pq, pr and ps using coordinates.So,
\[\overrightarrow {pq} \] = q-p
\[\Rightarrow \overrightarrow {pq}= \left( { - 1,2,5} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {pq} = ( - 1 - 3,2 - 0,5 - 1)\]
Simplify the values, we get,
\[\overrightarrow {pq} \]\[ = ( - 4,2,4)\]
Next,
\[\overrightarrow {pr} \]= r - p
\[\Rightarrow \overrightarrow {pr}= \left( {5,1, - 1} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {pr}= (5 - 3,1 - 0, - 1 - 1)\]
Simplify the values, we get,
\[ = (2,1, - 2)\]
And,
\[\overrightarrow {ps} \]= s – p
\[\Rightarrow \overrightarrow {ps}= \left( {0,4,2} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {ps}= (0 - 3,4 - 0,2 - 1)\]
Simplify the values, we get,
\[ \overrightarrow {ps}= ( - 3,4,1)\]
The scalar triple product is given by the determinant of the matrix \[(3 \times 3)\] that has in the rows the three components of the three vectors:
\[\left| { - 4 + 2 + 4} \right|\]
\[\Rightarrow \left| { + 2 + 1 - 2} \right|\]
\[\Rightarrow \left| { - 3 + 4 + 1} \right|\]
The expression to calculate the volume is given
\[V = \left| {PS \cdot \left( {PQ \times PR} \right)} \right|\]
Therefore, these three vectors can be used to calculate the volume of parallelogram as the triple product that can be expressed in determinant as follow,
\[V = |a \cdot (b \times c)|\]
\[\Rightarrow V = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right| \\
\Rightarrow V= {a_1}[{b_2}{c_3} - {c_2}{b_3}] - {a_2}[{b_1}{c_3} - {b_3}{c_1}] + {a_3}[{b_1}{c_2} - {b_2}{c_1}] \\
\]
Substituting the values in the determinant form as,
\[D = \left| {\begin{array}{*{20}{c}}
{ - 4}&2&4 \\
2&1&{ - 2} \\
{ - 3}&4&1
\end{array}} \right|\]
The volume can be calculated in the determinant form as,
\[V = - 4[1(1) - 4( - 2)] - 2[2(1) - ( - 2)( - 3)] + 4[2(4) - 1( - 3)]\]
Simplify the values, we get,
\[V = - 4[1 + 8] - 2[2 - 6] + 4[8 + 3]\]
\[\Rightarrow V = - 4(9) - 2( - 4) + 4(11)\]
\[\Rightarrow V= - 36 + 8 + 44 \\
\Rightarrow V= 16 \\ \]
\[\therefore \left| V \right| = \left| {16} \right| = 16\]
Thus, the volume of the parallelepiped is given as \[16\].
Note: Parallelepiped is a 3-D shape whose faces are all parallelograms. The volume of a parallelepiped is equal to the product of its surface area and height. The dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers, and returns a single number.
Complete step by step answer:
Given data is as below: the coordinates of the sides of the parallelogram are given as –
\[p\left( {3,0,1} \right),{\text{ }}q\left( { - 1,2,5} \right),{\text{ }}r\left( {5,1, - 1} \right){\text{ }}and{\text{ }}s\left( {0,4,2} \right)\]
Now, we will find the three vectors pq, pr and ps using coordinates.So,
\[\overrightarrow {pq} \] = q-p
\[\Rightarrow \overrightarrow {pq}= \left( { - 1,2,5} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {pq} = ( - 1 - 3,2 - 0,5 - 1)\]
Simplify the values, we get,
\[\overrightarrow {pq} \]\[ = ( - 4,2,4)\]
Next,
\[\overrightarrow {pr} \]= r - p
\[\Rightarrow \overrightarrow {pr}= \left( {5,1, - 1} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {pr}= (5 - 3,1 - 0, - 1 - 1)\]
Simplify the values, we get,
\[ = (2,1, - 2)\]
And,
\[\overrightarrow {ps} \]= s – p
\[\Rightarrow \overrightarrow {ps}= \left( {0,4,2} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {ps}= (0 - 3,4 - 0,2 - 1)\]
Simplify the values, we get,
\[ \overrightarrow {ps}= ( - 3,4,1)\]
The scalar triple product is given by the determinant of the matrix \[(3 \times 3)\] that has in the rows the three components of the three vectors:
\[\left| { - 4 + 2 + 4} \right|\]
\[\Rightarrow \left| { + 2 + 1 - 2} \right|\]
\[\Rightarrow \left| { - 3 + 4 + 1} \right|\]
The expression to calculate the volume is given
\[V = \left| {PS \cdot \left( {PQ \times PR} \right)} \right|\]
Therefore, these three vectors can be used to calculate the volume of parallelogram as the triple product that can be expressed in determinant as follow,
\[V = |a \cdot (b \times c)|\]
\[\Rightarrow V = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right| \\
\Rightarrow V= {a_1}[{b_2}{c_3} - {c_2}{b_3}] - {a_2}[{b_1}{c_3} - {b_3}{c_1}] + {a_3}[{b_1}{c_2} - {b_2}{c_1}] \\
\]
Substituting the values in the determinant form as,
\[D = \left| {\begin{array}{*{20}{c}}
{ - 4}&2&4 \\
2&1&{ - 2} \\
{ - 3}&4&1
\end{array}} \right|\]
The volume can be calculated in the determinant form as,
\[V = - 4[1(1) - 4( - 2)] - 2[2(1) - ( - 2)( - 3)] + 4[2(4) - 1( - 3)]\]
Simplify the values, we get,
\[V = - 4[1 + 8] - 2[2 - 6] + 4[8 + 3]\]
\[\Rightarrow V = - 4(9) - 2( - 4) + 4(11)\]
\[\Rightarrow V= - 36 + 8 + 44 \\
\Rightarrow V= 16 \\ \]
\[\therefore \left| V \right| = \left| {16} \right| = 16\]
Thus, the volume of the parallelepiped is given as \[16\].
Note: Parallelepiped is a 3-D shape whose faces are all parallelograms. The volume of a parallelepiped is equal to the product of its surface area and height. The dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers, and returns a single number.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

