
X′s salary is half that of Y′s. If X got a 50 % rise in his salary and Y got 25 % rise in his salary, then the percentage increase in combined salaries of both is -\[\]
A.30\[\]
B. $33\dfrac{1}{3}$\[\]
C.$37\dfrac{1}{2}$\[\]
D.75\[\]
Answer
587.1k+ views
Hint: We take the salary of X as $x$ and the salary of Y as $y$ then the combined salary is $x+y$. We find the combined increment by adding the increments of X and Y . We multiply 100 to the ratio of combined increment to combined salary before increment to get the answer. \[\]
Complete step by step answer:
We know that if we are asked what percentage of $b$ is $a$ then the answer is $\dfrac{a}{b}\times 100.$
Let us assume the salary of X as $x$ and the salary of Y as $y$. We are given the question that the salary of X is that of Y or we can say the salary of Y is twice that of salary of X. So we can write it as $y=2x$. Then the combined salary of both X and Y before the increment is $x+y=x+2x=3x$\[\]
We are given the question that the salary of X has increased by 50%. So the increment in salary of X is $x\times 50 \%=x\times 0.50=0.5x$ . We are also given that the salary of Y has increased by 25%. So the increment in salary of Y is $y\times 25 \%=\left( 2x \right)\times 0.25=0.50x$(since $y=2x$ previously obtained).
So the total combined increment for both is $0.50x+0.50x=x$\[\]
So the percentage increment or rise in salary is the ratio of total combined increment to the combined salary of both X and Y before the increment multiplied by 100. So the percentage increment is
\[\dfrac{x}{3x}\times 100=\dfrac{100}{3}=33\dfrac{1}{3}\]
So the correct choice is B.\[\]
Note:
We note that if $x$ has increased by percentage ${{P}_{x}}$ and $y$ has increased by percentage ${{P}_{y}}$ then $x{{P}_{x}}+y{{P}_{y}}=\left( x+y \right)\left( {{P}_{x}}+{{P}_{y}} \right)$ is not necessarily true. We can directly find the increase of $x$ by percentage $P$ as $x\left( 1+\dfrac{P}{100} \right)$. If there is a successive percentage increase say $a%,b%$ of $x$ then the effective percentage increase is $a+b+\dfrac{ab}{100}$.
Complete step by step answer:
We know that if we are asked what percentage of $b$ is $a$ then the answer is $\dfrac{a}{b}\times 100.$
Let us assume the salary of X as $x$ and the salary of Y as $y$. We are given the question that the salary of X is that of Y or we can say the salary of Y is twice that of salary of X. So we can write it as $y=2x$. Then the combined salary of both X and Y before the increment is $x+y=x+2x=3x$\[\]
We are given the question that the salary of X has increased by 50%. So the increment in salary of X is $x\times 50 \%=x\times 0.50=0.5x$ . We are also given that the salary of Y has increased by 25%. So the increment in salary of Y is $y\times 25 \%=\left( 2x \right)\times 0.25=0.50x$(since $y=2x$ previously obtained).
So the total combined increment for both is $0.50x+0.50x=x$\[\]
So the percentage increment or rise in salary is the ratio of total combined increment to the combined salary of both X and Y before the increment multiplied by 100. So the percentage increment is
\[\dfrac{x}{3x}\times 100=\dfrac{100}{3}=33\dfrac{1}{3}\]
So the correct choice is B.\[\]
Note:
We note that if $x$ has increased by percentage ${{P}_{x}}$ and $y$ has increased by percentage ${{P}_{y}}$ then $x{{P}_{x}}+y{{P}_{y}}=\left( x+y \right)\left( {{P}_{x}}+{{P}_{y}} \right)$ is not necessarily true. We can directly find the increase of $x$ by percentage $P$ as $x\left( 1+\dfrac{P}{100} \right)$. If there is a successive percentage increase say $a%,b%$ of $x$ then the effective percentage increase is $a+b+\dfrac{ab}{100}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

