
\[x=\dfrac{1}{2-\sqrt{3}}\] ,find the value of \[{{x}^{3}}-2{{x}^{2}}-7x+5\].
Answer
587.4k+ views
Hint: Here we are going to apply the basic formulas of conjugates. Such as, the conjugate of \[\left( a+\sqrt{b} \right)\]is \[\left( a-\sqrt{b} \right)\].To avoid the complexity of calculations.
Formulas used:
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)\]
Complete step-by-step answer:
\[x=\dfrac{1}{2-\sqrt{3}}\] \[\begin{align}
& =\dfrac{1}{2-\sqrt{3}}.\dfrac{2+\sqrt{3}}{2+\sqrt{3}}\text{ }\left[ Multiplyin\text{g both numerator }\!\!\And\!\!\text{ denominator by conjugate of denominator} \right] \\
& =\dfrac{2+\sqrt{3}}{{{\left( 2 \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}}} \\
& =\dfrac{2+\sqrt{3}}{4-3} \\
& =2+\sqrt{3} \\
\end{align}\]
We have to calculate \[{{x}^{2}}\]separately for the ease of the calculation.
\[{{x}^{2}}={{\left( 2+\sqrt{3} \right)}^{\begin{smallmatrix}
2 \\
\end{smallmatrix}}}\]
\[\begin{align}
& =4+4\sqrt{3}+3\text{ }\left[ We\text{ know that,}{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \right] \\
& =7+4\sqrt{3} \\
\end{align}\]
Now if we consider the given expression-
\[\begin{align}
& {{x}^{3}}-2{{x}^{2}}-7x+5 \\
& ={{x}^{3}}-7x-2{{x}^{2}}+5 \\
& =x\left( {{x}^{2}}-7 \right)-2{{x}^{2}}+5 \\
& =\left( 2+\sqrt{3} \right)\left( 7+4\sqrt{3}-7 \right)-2\left( 7+4\sqrt{3} \right)+5\text{ }\left[ \text{Now, replacing the value of x }\!\!\And\!\!\text{ }{{\text{x}}^{2}} \right] \\
& =\left( 2+\sqrt{3} \right)4\sqrt{3}-14-8\sqrt{3}+5 \\
& =8\sqrt{3}+12-14-8\sqrt{3}+5 \\
& =3 \\
\end{align}\]
Hence
For, \[x=\dfrac{1}{2-\sqrt{3}}\] the value of \[{{x}^{3}}-2{{x}^{2}}-7x+5\]will be \[3\].
Note: What is a complex conjugate?
Each of two complex numbers having their real parts identical and their imaginary parts of equal magnitude but opposite in sign are called the conjugate multiple of one another.
Formulas used:
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)\]
Complete step-by-step answer:
\[x=\dfrac{1}{2-\sqrt{3}}\] \[\begin{align}
& =\dfrac{1}{2-\sqrt{3}}.\dfrac{2+\sqrt{3}}{2+\sqrt{3}}\text{ }\left[ Multiplyin\text{g both numerator }\!\!\And\!\!\text{ denominator by conjugate of denominator} \right] \\
& =\dfrac{2+\sqrt{3}}{{{\left( 2 \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}}} \\
& =\dfrac{2+\sqrt{3}}{4-3} \\
& =2+\sqrt{3} \\
\end{align}\]
We have to calculate \[{{x}^{2}}\]separately for the ease of the calculation.
\[{{x}^{2}}={{\left( 2+\sqrt{3} \right)}^{\begin{smallmatrix}
2 \\
\end{smallmatrix}}}\]
\[\begin{align}
& =4+4\sqrt{3}+3\text{ }\left[ We\text{ know that,}{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \right] \\
& =7+4\sqrt{3} \\
\end{align}\]
Now if we consider the given expression-
\[\begin{align}
& {{x}^{3}}-2{{x}^{2}}-7x+5 \\
& ={{x}^{3}}-7x-2{{x}^{2}}+5 \\
& =x\left( {{x}^{2}}-7 \right)-2{{x}^{2}}+5 \\
& =\left( 2+\sqrt{3} \right)\left( 7+4\sqrt{3}-7 \right)-2\left( 7+4\sqrt{3} \right)+5\text{ }\left[ \text{Now, replacing the value of x }\!\!\And\!\!\text{ }{{\text{x}}^{2}} \right] \\
& =\left( 2+\sqrt{3} \right)4\sqrt{3}-14-8\sqrt{3}+5 \\
& =8\sqrt{3}+12-14-8\sqrt{3}+5 \\
& =3 \\
\end{align}\]
Hence
For, \[x=\dfrac{1}{2-\sqrt{3}}\] the value of \[{{x}^{3}}-2{{x}^{2}}-7x+5\]will be \[3\].
Note: What is a complex conjugate?
Each of two complex numbers having their real parts identical and their imaginary parts of equal magnitude but opposite in sign are called the conjugate multiple of one another.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

