![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
\[x = 1\]is the radical axis of two circles which cut each other orthogonally. If \[{x^2} + {y^2} = 9\] is the equation of one circle, then the equation of the other circle is
A.\[{x^2} + {y^2} - 9x + 9 = 0\]
B.\[{x^2} + {y^2} + 18x - 9 = 0\]
C.\[{x^2} + {y^2} - 18x + 9 = 0\]
D.\[{x^2} + {y^2} + 9x + 9 = 0\]
Answer
467.4k+ views
Hint: Orthogonal circles cut one another at right angles. Using Pythagoras theorem, two circle of radii r1, r2 whose center are at distance d apart are orthogonal if \[r_1^2 + r_2^2 = {d^2}\] and given by the equation \[2gg' + 2ff' = c + c'\].
The angle of intersection of two overlapping circles is defined as the angle between their tangents at their intersection points. Where if the angle is \[{180^ \circ }\] it is known as tangent and the angle is \[{90^ \circ }\]then it is orthogonal.
Complete step-by-step answer:
Given the equation of one circle is \[{x^2} + {y^2} = 9\] whose center is (0, 0)
Given the radical axis of two circles\[x = 1\], therefore the line joining centers should be perpendicular to\[x = 1\]
The center of another circle should lie on\[y = 0\],
Let the center of another circle be \[\left( {a,0} \right)\]and the radius \[r\],
So the equation of other circle is \[{\left( {x - a} \right)^2} + {y^2} = {r^2} - - - - (i)\]
Since the given two circles are orthogonal we can write \[{a^2} = {r^2} + 9\]
We know the center of the two circle are at \[\left( {0,0} \right)\] and also their radius being 3 and r respectively
Since the lengths of the tangents from radial axis are equal, hence we get
\[\Rightarrow {\left( {1 - a} \right)^2} + 0 - {r^2} = 1 - 9\]
This can be written as:
\[
\Rightarrow {\left( {1 - a} \right)^2} + 0 - {r^2} = 1 - 9 \\
\Rightarrow 1 - 2a + {a^2} - {r^2} = - 8 \\
\Rightarrow {a^2} - {r^2} = 2a - 9 - - (i) \\
\]
We know \[{a^2} = {r^2} + 9\] since the circles are orthogonal
\[\Rightarrow {a^2} - {r^2} = 9 - - (ii)\]
Hence by solving equation (i) and (ii) we can write
\[
\Rightarrow 2a - 9 = 9 \\
\Rightarrow 2a = 18 \\
\Rightarrow a = 9 \\
\]
Also
\[
{a^2} - {r^2} = 9 \\
\Rightarrow {\left( 9 \right)^2} - {r^2} = 9 \\
\Rightarrow {r^2} = 81 - 9 \\
\Rightarrow {r^2} = 72 \\
\]
Substituting the values of $ a = 9 $ and $ {r^2} = 72 $ in equation (i) as:
\[
\Rightarrow {\left( {x - a} \right)^2} + {y^2} = {r^2} \\
\Rightarrow {\left( {x - 9} \right)^2} + {y^2} = 72 \\
\Rightarrow {x^2} + 81 - 18x + {y^2} - 72 = 0 \\
\Rightarrow {x^2} + {y^2} - 18x + 9 = 0 \\
\]
Hence, the equation of the required circle is given as \[{x^2} + {y^2} - 18x + 9 = 0\].
So, the correct answer is “Option C”.
Note: Students must not get confused with the two equations of the circle as the coordinates of the center of both the circles are different. Moreover, the radius is varying by a considerable amount. Always try to stick to the fundamental standard equation of the circle i.e., $ {\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2} $ .
The angle of intersection of two overlapping circles is defined as the angle between their tangents at their intersection points. Where if the angle is \[{180^ \circ }\] it is known as tangent and the angle is \[{90^ \circ }\]then it is orthogonal.
Complete step-by-step answer:
Given the equation of one circle is \[{x^2} + {y^2} = 9\] whose center is (0, 0)
![seo images](https://www.vedantu.com/question-sets/2c477132-ea0c-4cf3-9a4e-c11d58fa59074104171602713475399.png)
Given the radical axis of two circles\[x = 1\], therefore the line joining centers should be perpendicular to\[x = 1\]
The center of another circle should lie on\[y = 0\],
Let the center of another circle be \[\left( {a,0} \right)\]and the radius \[r\],
So the equation of other circle is \[{\left( {x - a} \right)^2} + {y^2} = {r^2} - - - - (i)\]
Since the given two circles are orthogonal we can write \[{a^2} = {r^2} + 9\]
We know the center of the two circle are at \[\left( {0,0} \right)\] and also their radius being 3 and r respectively
Since the lengths of the tangents from radial axis are equal, hence we get
\[\Rightarrow {\left( {1 - a} \right)^2} + 0 - {r^2} = 1 - 9\]
This can be written as:
\[
\Rightarrow {\left( {1 - a} \right)^2} + 0 - {r^2} = 1 - 9 \\
\Rightarrow 1 - 2a + {a^2} - {r^2} = - 8 \\
\Rightarrow {a^2} - {r^2} = 2a - 9 - - (i) \\
\]
We know \[{a^2} = {r^2} + 9\] since the circles are orthogonal
\[\Rightarrow {a^2} - {r^2} = 9 - - (ii)\]
Hence by solving equation (i) and (ii) we can write
\[
\Rightarrow 2a - 9 = 9 \\
\Rightarrow 2a = 18 \\
\Rightarrow a = 9 \\
\]
Also
\[
{a^2} - {r^2} = 9 \\
\Rightarrow {\left( 9 \right)^2} - {r^2} = 9 \\
\Rightarrow {r^2} = 81 - 9 \\
\Rightarrow {r^2} = 72 \\
\]
Substituting the values of $ a = 9 $ and $ {r^2} = 72 $ in equation (i) as:
\[
\Rightarrow {\left( {x - a} \right)^2} + {y^2} = {r^2} \\
\Rightarrow {\left( {x - 9} \right)^2} + {y^2} = 72 \\
\Rightarrow {x^2} + 81 - 18x + {y^2} - 72 = 0 \\
\Rightarrow {x^2} + {y^2} - 18x + 9 = 0 \\
\]
Hence, the equation of the required circle is given as \[{x^2} + {y^2} - 18x + 9 = 0\].
So, the correct answer is “Option C”.
Note: Students must not get confused with the two equations of the circle as the coordinates of the center of both the circles are different. Moreover, the radius is varying by a considerable amount. Always try to stick to the fundamental standard equation of the circle i.e., $ {\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2} $ .
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 English: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Computer Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Maths: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Social Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Economics: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What problem did Carter face when he reached the mummy class 11 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)