
Write the value of \[\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)\].
Answer
595.8k+ views
Hint: In the given expression first expand the \[2{{\tan }^{-1}}\dfrac{1}{5}\]using the \[2{{\tan }^{-1}}x\]formulae take the value of \[x=\dfrac{1}{5}\]and substitute it in the formulae and we know that \[\tan \left( {{\tan }^{-1}}\theta \right)=\theta \]. By using these two formulas we will get the value of \[\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)\].
Complete step-by-step answer:
Given that we have to find the value of \[\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)\]
We know that the formula for \[2{{\tan }^{-1}}x\]is given by \[2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]
Here the value of $x$ is \[x=\dfrac{1}{5}\]
Now apply the above formula to the expression we will get
\[=\tan \left[ {{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{5}}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right) \right]\]. . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[=\tan \left[ {{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{1-\dfrac{1}{25}} \right) \right]\] . . . . . . . . . . . . . . . . . . . . . . . . . . .. .(2)
\[=\tan \left[ {{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{24}{25}} \right) \right]\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .(3)
\[=\tan \left[ {{\tan }^{-1}}\left( \dfrac{2}{5}\times \dfrac{25}{24} \right) \right]\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
\[=\tan \left[ {{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right]\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5)
\[=\dfrac{5}{12}\]
So we get the value of \[\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)\]\[=\dfrac{5}{12}\].
Note: The inverse function tan exists for every real number. For every \[x\in \left( -\infty ,\infty \right)\]it is called the inverse tangent function or arc tangent function. So if \[{{\tan }^{-1}}x=\theta \] then \[\tan \theta =x\]. The domain of \[{{\tan }^{-1}}x\]is set of all real numbers or else denoted by R and range is \[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\].
Complete step-by-step answer:
Given that we have to find the value of \[\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)\]
We know that the formula for \[2{{\tan }^{-1}}x\]is given by \[2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]
Here the value of $x$ is \[x=\dfrac{1}{5}\]
Now apply the above formula to the expression we will get
\[=\tan \left[ {{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{5}}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right) \right]\]. . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[=\tan \left[ {{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{1-\dfrac{1}{25}} \right) \right]\] . . . . . . . . . . . . . . . . . . . . . . . . . . .. .(2)
\[=\tan \left[ {{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{24}{25}} \right) \right]\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .(3)
\[=\tan \left[ {{\tan }^{-1}}\left( \dfrac{2}{5}\times \dfrac{25}{24} \right) \right]\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
\[=\tan \left[ {{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right]\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5)
\[=\dfrac{5}{12}\]
So we get the value of \[\tan \left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)\]\[=\dfrac{5}{12}\].
Note: The inverse function tan exists for every real number. For every \[x\in \left( -\infty ,\infty \right)\]it is called the inverse tangent function or arc tangent function. So if \[{{\tan }^{-1}}x=\theta \] then \[\tan \theta =x\]. The domain of \[{{\tan }^{-1}}x\]is set of all real numbers or else denoted by R and range is \[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

