Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Write the value of \[\left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right)\].

Answer
VerifiedVerified
559.8k+ views
Hint: We use the formula of combination for each of the elements in the sum. Substitute the corresponding values of ‘n’ and ‘r’ in the formula of combination for respective terms.
* Formula of combination is given by \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]

Complete step by step solution:
We have to find the value of \[\left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right)\]
Here the elements of the sum are \[^5{C_1}{,^5}{C_2}{,^5}{C_3}{,^5}{C_4}{,^5}{C_5}\]
Use the formula of combinations i.e. \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\] to find each of the elements of the sum.
We substitute the value of \[n = 5,r = 1\] in the formula of combination.
\[{ \Rightarrow ^5}{C_1} = \dfrac{{5!}}{{(5 - 1)!1!}}\]
Calculate the difference in the denominator
\[{ \Rightarrow ^5}{C_1} = \dfrac{{5!}}{{4!1!}}\]
Write the numerator using method of factorial i.e. \[n! = n \times (n - 1)!\]
\[{ \Rightarrow ^5}{C_1} = \dfrac{{5 \times 4!}}{{4!1!}}\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^5}{C_1} = \dfrac{5}{{1!}}\]
Substitute the value of \[1! = 1\] in the denominator
\[{ \Rightarrow ^5}{C_1} = 5\]..................… (1)
We substitute the value of \[n = 5,r = 2\] in the formula of combination.
\[{ \Rightarrow ^5}{C_2} = \dfrac{{5!}}{{(5 - 2)!2!}}\]
Calculate the difference in the denominator
\[{ \Rightarrow ^5}{C_2} = \dfrac{{5!}}{{3!2!}}\]
Write the numerator using method of factorial i.e. \[n! = n \times (n - 1)!\]
\[{ \Rightarrow ^5}{C_2} = \dfrac{{5 \times 4 \times 3!}}{{3!2!}}\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^5}{C_2} = \dfrac{{5 \times 4}}{{2!}}\]
Substitute the value of \[2! = 2 \times 1\] in the denominator
\[{ \Rightarrow ^5}{C_2} = \dfrac{{5 \times 4}}{2}\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^5}{C_2} = 10\]....................… (2)
We substitute the value of \[n = 5,r = 3\] in the formula of combination.
\[{ \Rightarrow ^5}{C_3} = \dfrac{{5!}}{{(5 - 3)!3!}}\]
Calculate the difference in the denominator
\[{ \Rightarrow ^5}{C_3} = \dfrac{{5!}}{{2!3!}}\]
Write the numerator using method of factorial i.e. \[n! = n \times (n - 1)!\]
\[{ \Rightarrow ^5}{C_3} = \dfrac{{5 \times 4 \times 3!}}{{2!3!}}\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^5}{C_3} = \dfrac{{5 \times 4}}{{2!}}\]
Substitute the value of \[2! = 2 \times 1\] in the denominator
\[{ \Rightarrow ^5}{C_3} = \dfrac{{5 \times 4}}{2}\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^5}{C_3} = 10\].................… (3)
We substitute the value of \[n = 5,r = 1\] in the formula of combination.
\[{ \Rightarrow ^5}{C_4} = \dfrac{{5!}}{{(5 - 4)!4!}}\]
Calculate the difference in the denominator
\[{ \Rightarrow ^5}{C_4} = \dfrac{{5!}}{{1!4!}}\]
Write the numerator using method of factorial i.e. \[n! = n \times (n - 1)!\]
\[{ \Rightarrow ^5}{C_4} = \dfrac{{5 \times 4!}}{{1!4!}}\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^5}{C_4} = \dfrac{5}{{1!}}\]
Substitute the value of \[1! = 1\] in the denominator
\[{ \Rightarrow ^5}{C_4} = 5\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^5}{C_4} = 5\]..............… (4)
We substitute the value of \[n = 5,r = 5\] in the formula of combination.
\[{ \Rightarrow ^5}{C_5} = \dfrac{{5!}}{{(5 - 5)!5!}}\]
Calculate the difference in the denominator
\[{ \Rightarrow ^5}{C_5} = \dfrac{{5!}}{{0!5!}}\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^5}{C_5} = \dfrac{1}{{0!}}\]
Substitute the value of \[0! = 1\] in the denominator
\[{ \Rightarrow ^5}{C_5} = 1\]...............… (5)
We substitute the values of \[^5{C_1}{,^5}{C_2}{,^5}{C_3}{,^5}{C_4}{,^5}{C_5}\]in the sum\[\left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right)\]
\[ \Rightarrow \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right) = 5 + 10 + 10 + 5 + 1\]
Add the terms in RHS of the equation
\[ \Rightarrow \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right) = 31\]

\[\therefore \]The value of \[\left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right)\] is 31.

Note: Students are likely to make the mistake of substituting the value of \[0! = 0\] which is wrong. Keep in mind this value of factorial of zero is fixed as 1, similarly the value of \[1! = 1\] is fixed.
Alternate method:
We can solve for the value of \[\left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right)\] using the formula \[^n{C_r}{ = ^n}{C_{n - r}}\]
Here the value of \[n = 5\]
Put\[n = 5\]; \[r = 1\] in the formula \[^n{C_r}{ = ^n}{C_{n - r}}\]
\[{ \Rightarrow ^5}{C_1}{ = ^5}{C_{5 - 1}}\]
\[{ \Rightarrow ^5}{C_1}{ = ^5}{C_4}\]................… (1)
Put\[n = 5\]; \[r = 2\] in the formula \[^n{C_r}{ = ^n}{C_{n - r}}\]
\[{ \Rightarrow ^5}{C_2}{ = ^5}{C_{5 - 2}}\]
\[{ \Rightarrow ^5}{C_2}{ = ^5}{C_3}\].................… (2)
Substitute the values from equations (1) and (2) in the equation given in the question
\[ \Rightarrow \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right) = \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_2}{ + ^5}{C_1}{ + ^5}{C_5}} \right)\]
Add like terms
\[ \Rightarrow \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right) = \left( {2{ \times ^5}{C_1} + 2{ \times ^5}{C_2}{ + ^5}{C_5}} \right)\]
We know formula of combination is given by \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\] .
\[ \Rightarrow \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right) = \left( {2 \times \dfrac{{5!}}{{(5 - 1)!1!}} + 2 \times \dfrac{{5!}}{{(5 - 2)!2!}} + \dfrac{{5!}}{{(5 - 5)!5!}}} \right)\]
\[ \Rightarrow \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right) = \left( {2 \times \dfrac{{5!}}{{4!1!}} + 2 \times \dfrac{{5!}}{{3!2!}} + \dfrac{{5!}}{{0!5!}}} \right)\]
Write numerator using factorial formula
\[ \Rightarrow \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right) = \left( {2 \times \dfrac{{5 \times 4!}}{{4!1!}} + 2 \times \dfrac{{5 \times 4 \times 3!}}{{3!2!}} + \dfrac{{5!}}{{0!5!}}} \right)\]
Cancel the same terms from numerator and denominator.
\[ \Rightarrow \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right) = \left( {2 \times \dfrac{5}{{1!}} + 2 \times \dfrac{{5 \times 4}}{{2!}} + \dfrac{1}{{0!}}} \right)\]
Put \[1! = 1,2! = 2,0! = 1\]
\[ \Rightarrow \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right) = \left( {2 \times 5 + 5 \times 4 + 1} \right)\]
\[ \Rightarrow \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right) = \left( {10 + 20 + 1} \right)\]
\[ \Rightarrow \left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right) = 31\]
\[\therefore \]The value of \[\left( {^5{C_1}{ + ^5}{C_2}{ + ^5}{C_3}{ + ^5}{C_4}{ + ^5}{C_5}} \right)\] is 31.