
Write the value of \[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right),\left| x \right|\le 1.\]
Answer
615.6k+ views
Hint: First find the value of \[\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)\] by substituting \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \]. Thus find its value and substitute it in the expression. Use a trigonometric table and find the values.
Complete step-by-step answer:
We have been given the expression \[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)......(1)\]
Let us assume that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\begin{align}
& {{\sin }^{-1}}x=\alpha \\
& \therefore x=\sin \alpha \\
\end{align}\] and \[\begin{align}
& {{\cos }^{-1}}x=\beta \\
& \therefore x=\cos \beta \\
\end{align}\]
Thus, by equating both the expressions, we get,
\[\sin \alpha =\cos \beta =x\].
Thus we can say that \[\sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right)\].
From the trigonometric identities, we know that.
\[\begin{align}
& \sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \\
& \therefore \sin \left( {{90}^{\circ }}-\beta \right)=\cos \beta \\
& \therefore \sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right) \\
\end{align}\]
Cancelling out sin from both the sides, we get,
\[\begin{align}
& \alpha ={}^{\pi }/{}_{2}-\beta \\
& \therefore \alpha +\beta ={}^{\pi }/{}_{2}. \\
\end{align}\]
We said that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={}^{\pi }/{}_{2}........(2)\]
Now let us substitute equation (2) in (1).
\[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)=\cos {}^{\pi }/{}_{2}=0\].
We know from the trigonometric table that \[\cos {}^{\pi }/{}_{2}=0\].
Note:
We can also say that
\[\begin{align}
& \left( {{\cos }^{-1}}x \right)=A \\
& x=\cos A \\
\end{align}\]
We know,
\[\begin{align}
& \sin A=\sqrt{1-{{\cos }^{2}}A} \\
& \therefore A={{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& ={{\sin }^{-1}}\left( x\sqrt{1-{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}}+\sqrt{1-{{x}^{2}}} \right)
\\
& ={{\sin }^{-1}}\left( x\sqrt{{{x}^{2}}}+1-{{x}^{2}} \right) \\
& ={{\sin }^{-1}}\left( {{x}^{2}}+1-{{x}^{2}} \right)={{\sin }^{-1}}(1)={}^{\pi }/{}_{2}. \\
\end{align}\]
Complete step-by-step answer:
We have been given the expression \[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)......(1)\]
Let us assume that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\begin{align}
& {{\sin }^{-1}}x=\alpha \\
& \therefore x=\sin \alpha \\
\end{align}\] and \[\begin{align}
& {{\cos }^{-1}}x=\beta \\
& \therefore x=\cos \beta \\
\end{align}\]
Thus, by equating both the expressions, we get,
\[\sin \alpha =\cos \beta =x\].
Thus we can say that \[\sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right)\].
From the trigonometric identities, we know that.
\[\begin{align}
& \sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \\
& \therefore \sin \left( {{90}^{\circ }}-\beta \right)=\cos \beta \\
& \therefore \sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right) \\
\end{align}\]
Cancelling out sin from both the sides, we get,
\[\begin{align}
& \alpha ={}^{\pi }/{}_{2}-\beta \\
& \therefore \alpha +\beta ={}^{\pi }/{}_{2}. \\
\end{align}\]
We said that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={}^{\pi }/{}_{2}........(2)\]
Now let us substitute equation (2) in (1).
\[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)=\cos {}^{\pi }/{}_{2}=0\].
We know from the trigonometric table that \[\cos {}^{\pi }/{}_{2}=0\].
Note:
We can also say that
\[\begin{align}
& \left( {{\cos }^{-1}}x \right)=A \\
& x=\cos A \\
\end{align}\]
We know,
\[\begin{align}
& \sin A=\sqrt{1-{{\cos }^{2}}A} \\
& \therefore A={{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& ={{\sin }^{-1}}\left( x\sqrt{1-{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}}+\sqrt{1-{{x}^{2}}} \right)
\\
& ={{\sin }^{-1}}\left( x\sqrt{{{x}^{2}}}+1-{{x}^{2}} \right) \\
& ={{\sin }^{-1}}\left( {{x}^{2}}+1-{{x}^{2}} \right)={{\sin }^{-1}}(1)={}^{\pi }/{}_{2}. \\
\end{align}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

