
Write the value of \[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right),\left| x \right|\le 1.\]
Answer
601.8k+ views
Hint: First find the value of \[\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)\] by substituting \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \]. Thus find its value and substitute it in the expression. Use a trigonometric table and find the values.
Complete step-by-step answer:
We have been given the expression \[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)......(1)\]
Let us assume that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\begin{align}
& {{\sin }^{-1}}x=\alpha \\
& \therefore x=\sin \alpha \\
\end{align}\] and \[\begin{align}
& {{\cos }^{-1}}x=\beta \\
& \therefore x=\cos \beta \\
\end{align}\]
Thus, by equating both the expressions, we get,
\[\sin \alpha =\cos \beta =x\].
Thus we can say that \[\sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right)\].
From the trigonometric identities, we know that.
\[\begin{align}
& \sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \\
& \therefore \sin \left( {{90}^{\circ }}-\beta \right)=\cos \beta \\
& \therefore \sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right) \\
\end{align}\]
Cancelling out sin from both the sides, we get,
\[\begin{align}
& \alpha ={}^{\pi }/{}_{2}-\beta \\
& \therefore \alpha +\beta ={}^{\pi }/{}_{2}. \\
\end{align}\]
We said that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={}^{\pi }/{}_{2}........(2)\]
Now let us substitute equation (2) in (1).
\[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)=\cos {}^{\pi }/{}_{2}=0\].
We know from the trigonometric table that \[\cos {}^{\pi }/{}_{2}=0\].
Note:
We can also say that
\[\begin{align}
& \left( {{\cos }^{-1}}x \right)=A \\
& x=\cos A \\
\end{align}\]
We know,
\[\begin{align}
& \sin A=\sqrt{1-{{\cos }^{2}}A} \\
& \therefore A={{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& ={{\sin }^{-1}}\left( x\sqrt{1-{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}}+\sqrt{1-{{x}^{2}}} \right)
\\
& ={{\sin }^{-1}}\left( x\sqrt{{{x}^{2}}}+1-{{x}^{2}} \right) \\
& ={{\sin }^{-1}}\left( {{x}^{2}}+1-{{x}^{2}} \right)={{\sin }^{-1}}(1)={}^{\pi }/{}_{2}. \\
\end{align}\]
Complete step-by-step answer:
We have been given the expression \[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)......(1)\]
Let us assume that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\begin{align}
& {{\sin }^{-1}}x=\alpha \\
& \therefore x=\sin \alpha \\
\end{align}\] and \[\begin{align}
& {{\cos }^{-1}}x=\beta \\
& \therefore x=\cos \beta \\
\end{align}\]
Thus, by equating both the expressions, we get,
\[\sin \alpha =\cos \beta =x\].
Thus we can say that \[\sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right)\].
From the trigonometric identities, we know that.
\[\begin{align}
& \sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \\
& \therefore \sin \left( {{90}^{\circ }}-\beta \right)=\cos \beta \\
& \therefore \sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right) \\
\end{align}\]
Cancelling out sin from both the sides, we get,
\[\begin{align}
& \alpha ={}^{\pi }/{}_{2}-\beta \\
& \therefore \alpha +\beta ={}^{\pi }/{}_{2}. \\
\end{align}\]
We said that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={}^{\pi }/{}_{2}........(2)\]
Now let us substitute equation (2) in (1).
\[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)=\cos {}^{\pi }/{}_{2}=0\].
We know from the trigonometric table that \[\cos {}^{\pi }/{}_{2}=0\].
Note:
We can also say that
\[\begin{align}
& \left( {{\cos }^{-1}}x \right)=A \\
& x=\cos A \\
\end{align}\]
We know,
\[\begin{align}
& \sin A=\sqrt{1-{{\cos }^{2}}A} \\
& \therefore A={{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& ={{\sin }^{-1}}\left( x\sqrt{1-{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}}+\sqrt{1-{{x}^{2}}} \right)
\\
& ={{\sin }^{-1}}\left( x\sqrt{{{x}^{2}}}+1-{{x}^{2}} \right) \\
& ={{\sin }^{-1}}\left( {{x}^{2}}+1-{{x}^{2}} \right)={{\sin }^{-1}}(1)={}^{\pi }/{}_{2}. \\
\end{align}\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

