
Write the value of \[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right),\left| x \right|\le 1.\]
Answer
517.8k+ views
Hint: First find the value of \[\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)\] by substituting \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \]. Thus find its value and substitute it in the expression. Use a trigonometric table and find the values.
Complete step-by-step answer:
We have been given the expression \[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)......(1)\]
Let us assume that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\begin{align}
& {{\sin }^{-1}}x=\alpha \\
& \therefore x=\sin \alpha \\
\end{align}\] and \[\begin{align}
& {{\cos }^{-1}}x=\beta \\
& \therefore x=\cos \beta \\
\end{align}\]
Thus, by equating both the expressions, we get,
\[\sin \alpha =\cos \beta =x\].
Thus we can say that \[\sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right)\].
From the trigonometric identities, we know that.
\[\begin{align}
& \sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \\
& \therefore \sin \left( {{90}^{\circ }}-\beta \right)=\cos \beta \\
& \therefore \sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right) \\
\end{align}\]
Cancelling out sin from both the sides, we get,
\[\begin{align}
& \alpha ={}^{\pi }/{}_{2}-\beta \\
& \therefore \alpha +\beta ={}^{\pi }/{}_{2}. \\
\end{align}\]
We said that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={}^{\pi }/{}_{2}........(2)\]
Now let us substitute equation (2) in (1).
\[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)=\cos {}^{\pi }/{}_{2}=0\].
We know from the trigonometric table that \[\cos {}^{\pi }/{}_{2}=0\].
Note:
We can also say that
\[\begin{align}
& \left( {{\cos }^{-1}}x \right)=A \\
& x=\cos A \\
\end{align}\]
We know,
\[\begin{align}
& \sin A=\sqrt{1-{{\cos }^{2}}A} \\
& \therefore A={{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& ={{\sin }^{-1}}\left( x\sqrt{1-{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}}+\sqrt{1-{{x}^{2}}} \right)
\\
& ={{\sin }^{-1}}\left( x\sqrt{{{x}^{2}}}+1-{{x}^{2}} \right) \\
& ={{\sin }^{-1}}\left( {{x}^{2}}+1-{{x}^{2}} \right)={{\sin }^{-1}}(1)={}^{\pi }/{}_{2}. \\
\end{align}\]
Complete step-by-step answer:
We have been given the expression \[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)......(1)\]
Let us assume that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\begin{align}
& {{\sin }^{-1}}x=\alpha \\
& \therefore x=\sin \alpha \\
\end{align}\] and \[\begin{align}
& {{\cos }^{-1}}x=\beta \\
& \therefore x=\cos \beta \\
\end{align}\]
Thus, by equating both the expressions, we get,
\[\sin \alpha =\cos \beta =x\].
Thus we can say that \[\sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right)\].
From the trigonometric identities, we know that.
\[\begin{align}
& \sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \\
& \therefore \sin \left( {{90}^{\circ }}-\beta \right)=\cos \beta \\
& \therefore \sin \alpha =\sin \left( {}^{\pi }/{}_{2}-\beta \right) \\
\end{align}\]
Cancelling out sin from both the sides, we get,
\[\begin{align}
& \alpha ={}^{\pi }/{}_{2}-\beta \\
& \therefore \alpha +\beta ={}^{\pi }/{}_{2}. \\
\end{align}\]
We said that \[\left( {{\sin }^{-1}}x \right)=\alpha \] and \[\left( {{\cos }^{-1}}x \right)=\beta \].
\[\therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={}^{\pi }/{}_{2}........(2)\]
Now let us substitute equation (2) in (1).
\[\cos \left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)=\cos {}^{\pi }/{}_{2}=0\].
We know from the trigonometric table that \[\cos {}^{\pi }/{}_{2}=0\].
Note:
We can also say that
\[\begin{align}
& \left( {{\cos }^{-1}}x \right)=A \\
& x=\cos A \\
\end{align}\]
We know,
\[\begin{align}
& \sin A=\sqrt{1-{{\cos }^{2}}A} \\
& \therefore A={{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\cos }^{-1}}x={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& \therefore {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{x}^{2}}} \\
& ={{\sin }^{-1}}\left( x\sqrt{1-{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}}+\sqrt{1-{{x}^{2}}} \right)
\\
& ={{\sin }^{-1}}\left( x\sqrt{{{x}^{2}}}+1-{{x}^{2}} \right) \\
& ={{\sin }^{-1}}\left( {{x}^{2}}+1-{{x}^{2}} \right)={{\sin }^{-1}}(1)={}^{\pi }/{}_{2}. \\
\end{align}\]
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
