
How do you write the Taylor series for $f\left( x \right)=\cosh x$?
Answer
542.1k+ views
Hint: The Taylor series expansion of a function is given by $\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{n}}\left( {{x}_{0}} \right)}{n!}{{\left( x-{{x}_{0}} \right)}^{n}}}$. For obtaining the Taylor series of the given function, we can choose ${{x}_{0}}=0$ and calculate $f\left( x \right),f'\left( x \right),f''\left( x \right),.......$ at $x=0$ from the given function $f\left( x \right)=\cosh x$. On putting these into the expanded form of $\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{n}}\left( {{x}_{0}} \right)}{n!}{{\left( x-{{x}_{0}} \right)}^{n}}}$, we will obtain the required Taylor series.
Complete step by step solution:
We know that the Taylor series expansion for a function $f\left( x \right)$ is given by $\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{n}}\left( {{x}_{0}} \right)}{n!}{{\left( x-{{x}_{0}} \right)}^{n}}}$. On expanding it we can write it as $\dfrac{f\left( {{x}_{0}} \right)}{0!}{{\left( x-{{x}_{0}} \right)}^{0}}+\dfrac{f'\left( {{x}_{0}} \right)}{1!}{{\left( x-{{x}_{0}} \right)}^{1}}+\dfrac{f''\left( {{x}_{0}} \right)}{2!}{{\left( x-{{x}_{0}} \right)}^{2}}+\dfrac{f'''\left( {{x}_{0}} \right)}{3!}{{\left( x-{{x}_{0}} \right)}^{3}}+........$. According to the above question, the function is given as
$\Rightarrow f\left( x \right)=\cosh x........\left( i \right)$
Differentiating the above equation with respect to x, we get
$\Rightarrow f'\left( x \right)=\sinh x.......\left( ii \right)$
Again on differentiating, we get
$\Rightarrow f''\left( x \right)=\cosh x.......\left( iii \right)$
Let us choose ${{x}_{0}}=0$. Then from (i) we can write
$\begin{align}
& \Rightarrow f\left( {{x}_{0}} \right)=f\left( 0 \right) \\
& \Rightarrow f\left( {{x}_{0}} \right)=\cosh 0 \\
& \Rightarrow f\left( {{x}_{0}} \right)=1 \\
\end{align}$
From (ii) we can write
$\begin{align}
& \Rightarrow f'\left( {{x}_{0}} \right)=f'\left( 0 \right) \\
& \Rightarrow f'\left( {{x}_{0}} \right)=\sinh 0 \\
& \Rightarrow f'\left( {{x}_{0}} \right)=0 \\
\end{align}$
From (iii) we can write
$\begin{align}
& \Rightarrow f''\left( {{x}_{0}} \right)=f'''\left( 0 \right) \\
& \Rightarrow f''\left( {{x}_{0}} \right)=\cosh 0 \\
& \Rightarrow f''\left( {{x}_{0}} \right)=1 \\
\end{align}$
Similarly, we will get
$\begin{align}
& \Rightarrow f'''\left( {{x}_{0}} \right)=0 \\
& \Rightarrow f''''\left( {{x}_{0}} \right)=1 \\
\end{align}$
Therefore, the Taylor series expansion for the given function about ${{x}_{0}}=0$ becomes
\[\begin{align}
& \Rightarrow f\left( x \right)=\dfrac{f\left( 0 \right)}{0!}{{\left( x-0 \right)}^{0}}+\dfrac{f'\left( 0 \right)}{1!}{{\left( x-0 \right)}^{1}}+\dfrac{f''\left( 0 \right)}{2!}{{\left( x-0 \right)}^{2}}+\dfrac{f'''\left( 0 \right)}{3!}{{\left( x-0 \right)}^{3}}+\dfrac{f''''\left( 0 \right)}{4!}{{\left( x-0 \right)}^{4}}....... \\
& \Rightarrow f\left( x \right)=\dfrac{1}{0!}+\dfrac{0}{1!}x+\dfrac{1}{2!}{{x}^{2}}++\dfrac{0}{3!}{{x}^{3}}+\dfrac{1}{4!}{{x}^{4}}....... \\
& \Rightarrow f\left( x \right)=1+\dfrac{1}{2}{{x}^{2}}+\dfrac{1}{24}{{x}^{4}}....... \\
\end{align}\]
Hence, the Taylor series expansion for the given function is obtained.
Note: We must note that since the point of expansion was not mentioned in the question, we assumed it to be zero. But we can expand the given function about any point. It is necessary to write minimum three non zero terms of a Taylor series, as in the above solution. We can also use the definition of the cosine hyperbolic function given by $\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}$, for finding out the value of the function and its derivatives at different points. Also, the sine hyperbolic function is defined as $\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}$.
Complete step by step solution:
We know that the Taylor series expansion for a function $f\left( x \right)$ is given by $\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{n}}\left( {{x}_{0}} \right)}{n!}{{\left( x-{{x}_{0}} \right)}^{n}}}$. On expanding it we can write it as $\dfrac{f\left( {{x}_{0}} \right)}{0!}{{\left( x-{{x}_{0}} \right)}^{0}}+\dfrac{f'\left( {{x}_{0}} \right)}{1!}{{\left( x-{{x}_{0}} \right)}^{1}}+\dfrac{f''\left( {{x}_{0}} \right)}{2!}{{\left( x-{{x}_{0}} \right)}^{2}}+\dfrac{f'''\left( {{x}_{0}} \right)}{3!}{{\left( x-{{x}_{0}} \right)}^{3}}+........$. According to the above question, the function is given as
$\Rightarrow f\left( x \right)=\cosh x........\left( i \right)$
Differentiating the above equation with respect to x, we get
$\Rightarrow f'\left( x \right)=\sinh x.......\left( ii \right)$
Again on differentiating, we get
$\Rightarrow f''\left( x \right)=\cosh x.......\left( iii \right)$
Let us choose ${{x}_{0}}=0$. Then from (i) we can write
$\begin{align}
& \Rightarrow f\left( {{x}_{0}} \right)=f\left( 0 \right) \\
& \Rightarrow f\left( {{x}_{0}} \right)=\cosh 0 \\
& \Rightarrow f\left( {{x}_{0}} \right)=1 \\
\end{align}$
From (ii) we can write
$\begin{align}
& \Rightarrow f'\left( {{x}_{0}} \right)=f'\left( 0 \right) \\
& \Rightarrow f'\left( {{x}_{0}} \right)=\sinh 0 \\
& \Rightarrow f'\left( {{x}_{0}} \right)=0 \\
\end{align}$
From (iii) we can write
$\begin{align}
& \Rightarrow f''\left( {{x}_{0}} \right)=f'''\left( 0 \right) \\
& \Rightarrow f''\left( {{x}_{0}} \right)=\cosh 0 \\
& \Rightarrow f''\left( {{x}_{0}} \right)=1 \\
\end{align}$
Similarly, we will get
$\begin{align}
& \Rightarrow f'''\left( {{x}_{0}} \right)=0 \\
& \Rightarrow f''''\left( {{x}_{0}} \right)=1 \\
\end{align}$
Therefore, the Taylor series expansion for the given function about ${{x}_{0}}=0$ becomes
\[\begin{align}
& \Rightarrow f\left( x \right)=\dfrac{f\left( 0 \right)}{0!}{{\left( x-0 \right)}^{0}}+\dfrac{f'\left( 0 \right)}{1!}{{\left( x-0 \right)}^{1}}+\dfrac{f''\left( 0 \right)}{2!}{{\left( x-0 \right)}^{2}}+\dfrac{f'''\left( 0 \right)}{3!}{{\left( x-0 \right)}^{3}}+\dfrac{f''''\left( 0 \right)}{4!}{{\left( x-0 \right)}^{4}}....... \\
& \Rightarrow f\left( x \right)=\dfrac{1}{0!}+\dfrac{0}{1!}x+\dfrac{1}{2!}{{x}^{2}}++\dfrac{0}{3!}{{x}^{3}}+\dfrac{1}{4!}{{x}^{4}}....... \\
& \Rightarrow f\left( x \right)=1+\dfrac{1}{2}{{x}^{2}}+\dfrac{1}{24}{{x}^{4}}....... \\
\end{align}\]
Hence, the Taylor series expansion for the given function is obtained.
Note: We must note that since the point of expansion was not mentioned in the question, we assumed it to be zero. But we can expand the given function about any point. It is necessary to write minimum three non zero terms of a Taylor series, as in the above solution. We can also use the definition of the cosine hyperbolic function given by $\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}$, for finding out the value of the function and its derivatives at different points. Also, the sine hyperbolic function is defined as $\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

