
How do you write the Taylor series for $f\left( x \right)=\cosh x$?
Answer
528k+ views
Hint: The Taylor series expansion of a function is given by $\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{n}}\left( {{x}_{0}} \right)}{n!}{{\left( x-{{x}_{0}} \right)}^{n}}}$. For obtaining the Taylor series of the given function, we can choose ${{x}_{0}}=0$ and calculate $f\left( x \right),f'\left( x \right),f''\left( x \right),.......$ at $x=0$ from the given function $f\left( x \right)=\cosh x$. On putting these into the expanded form of $\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{n}}\left( {{x}_{0}} \right)}{n!}{{\left( x-{{x}_{0}} \right)}^{n}}}$, we will obtain the required Taylor series.
Complete step by step solution:
We know that the Taylor series expansion for a function $f\left( x \right)$ is given by $\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{n}}\left( {{x}_{0}} \right)}{n!}{{\left( x-{{x}_{0}} \right)}^{n}}}$. On expanding it we can write it as $\dfrac{f\left( {{x}_{0}} \right)}{0!}{{\left( x-{{x}_{0}} \right)}^{0}}+\dfrac{f'\left( {{x}_{0}} \right)}{1!}{{\left( x-{{x}_{0}} \right)}^{1}}+\dfrac{f''\left( {{x}_{0}} \right)}{2!}{{\left( x-{{x}_{0}} \right)}^{2}}+\dfrac{f'''\left( {{x}_{0}} \right)}{3!}{{\left( x-{{x}_{0}} \right)}^{3}}+........$. According to the above question, the function is given as
$\Rightarrow f\left( x \right)=\cosh x........\left( i \right)$
Differentiating the above equation with respect to x, we get
$\Rightarrow f'\left( x \right)=\sinh x.......\left( ii \right)$
Again on differentiating, we get
$\Rightarrow f''\left( x \right)=\cosh x.......\left( iii \right)$
Let us choose ${{x}_{0}}=0$. Then from (i) we can write
$\begin{align}
& \Rightarrow f\left( {{x}_{0}} \right)=f\left( 0 \right) \\
& \Rightarrow f\left( {{x}_{0}} \right)=\cosh 0 \\
& \Rightarrow f\left( {{x}_{0}} \right)=1 \\
\end{align}$
From (ii) we can write
$\begin{align}
& \Rightarrow f'\left( {{x}_{0}} \right)=f'\left( 0 \right) \\
& \Rightarrow f'\left( {{x}_{0}} \right)=\sinh 0 \\
& \Rightarrow f'\left( {{x}_{0}} \right)=0 \\
\end{align}$
From (iii) we can write
$\begin{align}
& \Rightarrow f''\left( {{x}_{0}} \right)=f'''\left( 0 \right) \\
& \Rightarrow f''\left( {{x}_{0}} \right)=\cosh 0 \\
& \Rightarrow f''\left( {{x}_{0}} \right)=1 \\
\end{align}$
Similarly, we will get
$\begin{align}
& \Rightarrow f'''\left( {{x}_{0}} \right)=0 \\
& \Rightarrow f''''\left( {{x}_{0}} \right)=1 \\
\end{align}$
Therefore, the Taylor series expansion for the given function about ${{x}_{0}}=0$ becomes
\[\begin{align}
& \Rightarrow f\left( x \right)=\dfrac{f\left( 0 \right)}{0!}{{\left( x-0 \right)}^{0}}+\dfrac{f'\left( 0 \right)}{1!}{{\left( x-0 \right)}^{1}}+\dfrac{f''\left( 0 \right)}{2!}{{\left( x-0 \right)}^{2}}+\dfrac{f'''\left( 0 \right)}{3!}{{\left( x-0 \right)}^{3}}+\dfrac{f''''\left( 0 \right)}{4!}{{\left( x-0 \right)}^{4}}....... \\
& \Rightarrow f\left( x \right)=\dfrac{1}{0!}+\dfrac{0}{1!}x+\dfrac{1}{2!}{{x}^{2}}++\dfrac{0}{3!}{{x}^{3}}+\dfrac{1}{4!}{{x}^{4}}....... \\
& \Rightarrow f\left( x \right)=1+\dfrac{1}{2}{{x}^{2}}+\dfrac{1}{24}{{x}^{4}}....... \\
\end{align}\]
Hence, the Taylor series expansion for the given function is obtained.
Note: We must note that since the point of expansion was not mentioned in the question, we assumed it to be zero. But we can expand the given function about any point. It is necessary to write minimum three non zero terms of a Taylor series, as in the above solution. We can also use the definition of the cosine hyperbolic function given by $\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}$, for finding out the value of the function and its derivatives at different points. Also, the sine hyperbolic function is defined as $\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}$.
Complete step by step solution:
We know that the Taylor series expansion for a function $f\left( x \right)$ is given by $\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{n}}\left( {{x}_{0}} \right)}{n!}{{\left( x-{{x}_{0}} \right)}^{n}}}$. On expanding it we can write it as $\dfrac{f\left( {{x}_{0}} \right)}{0!}{{\left( x-{{x}_{0}} \right)}^{0}}+\dfrac{f'\left( {{x}_{0}} \right)}{1!}{{\left( x-{{x}_{0}} \right)}^{1}}+\dfrac{f''\left( {{x}_{0}} \right)}{2!}{{\left( x-{{x}_{0}} \right)}^{2}}+\dfrac{f'''\left( {{x}_{0}} \right)}{3!}{{\left( x-{{x}_{0}} \right)}^{3}}+........$. According to the above question, the function is given as
$\Rightarrow f\left( x \right)=\cosh x........\left( i \right)$
Differentiating the above equation with respect to x, we get
$\Rightarrow f'\left( x \right)=\sinh x.......\left( ii \right)$
Again on differentiating, we get
$\Rightarrow f''\left( x \right)=\cosh x.......\left( iii \right)$
Let us choose ${{x}_{0}}=0$. Then from (i) we can write
$\begin{align}
& \Rightarrow f\left( {{x}_{0}} \right)=f\left( 0 \right) \\
& \Rightarrow f\left( {{x}_{0}} \right)=\cosh 0 \\
& \Rightarrow f\left( {{x}_{0}} \right)=1 \\
\end{align}$
From (ii) we can write
$\begin{align}
& \Rightarrow f'\left( {{x}_{0}} \right)=f'\left( 0 \right) \\
& \Rightarrow f'\left( {{x}_{0}} \right)=\sinh 0 \\
& \Rightarrow f'\left( {{x}_{0}} \right)=0 \\
\end{align}$
From (iii) we can write
$\begin{align}
& \Rightarrow f''\left( {{x}_{0}} \right)=f'''\left( 0 \right) \\
& \Rightarrow f''\left( {{x}_{0}} \right)=\cosh 0 \\
& \Rightarrow f''\left( {{x}_{0}} \right)=1 \\
\end{align}$
Similarly, we will get
$\begin{align}
& \Rightarrow f'''\left( {{x}_{0}} \right)=0 \\
& \Rightarrow f''''\left( {{x}_{0}} \right)=1 \\
\end{align}$
Therefore, the Taylor series expansion for the given function about ${{x}_{0}}=0$ becomes
\[\begin{align}
& \Rightarrow f\left( x \right)=\dfrac{f\left( 0 \right)}{0!}{{\left( x-0 \right)}^{0}}+\dfrac{f'\left( 0 \right)}{1!}{{\left( x-0 \right)}^{1}}+\dfrac{f''\left( 0 \right)}{2!}{{\left( x-0 \right)}^{2}}+\dfrac{f'''\left( 0 \right)}{3!}{{\left( x-0 \right)}^{3}}+\dfrac{f''''\left( 0 \right)}{4!}{{\left( x-0 \right)}^{4}}....... \\
& \Rightarrow f\left( x \right)=\dfrac{1}{0!}+\dfrac{0}{1!}x+\dfrac{1}{2!}{{x}^{2}}++\dfrac{0}{3!}{{x}^{3}}+\dfrac{1}{4!}{{x}^{4}}....... \\
& \Rightarrow f\left( x \right)=1+\dfrac{1}{2}{{x}^{2}}+\dfrac{1}{24}{{x}^{4}}....... \\
\end{align}\]
Hence, the Taylor series expansion for the given function is obtained.
Note: We must note that since the point of expansion was not mentioned in the question, we assumed it to be zero. But we can expand the given function about any point. It is necessary to write minimum three non zero terms of a Taylor series, as in the above solution. We can also use the definition of the cosine hyperbolic function given by $\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}$, for finding out the value of the function and its derivatives at different points. Also, the sine hyperbolic function is defined as $\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

