
Write the square, making use of a pattern ${\left( {111111} \right)^2}$
Answer
577.8k+ views
Hint:First we construct a pattern and then we discuss that.
We can write the square of \[1`s\] and then find the square of this number.
Complete step-by-step answer:
Now we can construct and then solve by it, using this pattern method
$
{1^2} = 1 \\
{11^2} = 121 \\
{111^2} = 12321 \\
{1111^2} = 1234321 \\
{11111^2} = 123454321 \\
{111111^2} = 12345654321 \\
$
First we discuss about that the one square is one, eleven square is \[\;121\], one hundred eleven square is \[12321\],
Here we notice that it follows one pattern,
Suppose we take ${11^2}$ as equal to \[121\] , the answer should start with one and end with one.
We can add \[\left( {1 + 1 = 2} \right)\] that is in the middle position.
Also we can take ${111^2}$ is equal to \[12321\], answer should start and end with one and the middle term is \[\left( {1 + 1 + 1} \right)\] that is equal to \[3\] , and from second position of left and right is \[\left( {1 + 1 = 2} \right)\].
Also we can take ${1111^2}$ is equal to \[1234321\] , answer should start and end with one and the middle term is \[\;\left( {1 + 1 + 1 + 1} \right)\] that is equal to \[4\], and from third position of left and right this is of the form \[\left( {1 + 1 + 1 = 3} \right)\] and from second portion of left and right this is of the form \[\left( {1 + 1 = 2} \right)\]
Also we can take ${11111^2}$ is equal to \[\;123454321\], answer should start and end with one and the middle term is \[\left( {1 + 1 + 1 + 1 + 1} \right)\] that is equal to\[5\], and from fourth position of left and right this is of the form \[\left( {1 + 1 + 1 + 1 = 4} \right)\] and from third position of left and right this is of the form \[\left( {1 + 1 + 1 = 3} \right)\] and from second portion of left and right this is of the form \[\left( {1 + 1 = 2} \right)\]
Similarly we can find up to any \[1`s\] number.
Hence ${111111^2} = 12345654321$.
Note:Here we can use many methods; in general, we can multiply it. In a short time it is best to decode it and using pattern method develop your analyse skills to deeper understand of making hidden patterns inside in it.
We can write the square of \[1`s\] and then find the square of this number.
Complete step-by-step answer:
Now we can construct and then solve by it, using this pattern method
$
{1^2} = 1 \\
{11^2} = 121 \\
{111^2} = 12321 \\
{1111^2} = 1234321 \\
{11111^2} = 123454321 \\
{111111^2} = 12345654321 \\
$
First we discuss about that the one square is one, eleven square is \[\;121\], one hundred eleven square is \[12321\],
Here we notice that it follows one pattern,
Suppose we take ${11^2}$ as equal to \[121\] , the answer should start with one and end with one.
We can add \[\left( {1 + 1 = 2} \right)\] that is in the middle position.
Also we can take ${111^2}$ is equal to \[12321\], answer should start and end with one and the middle term is \[\left( {1 + 1 + 1} \right)\] that is equal to \[3\] , and from second position of left and right is \[\left( {1 + 1 = 2} \right)\].
Also we can take ${1111^2}$ is equal to \[1234321\] , answer should start and end with one and the middle term is \[\;\left( {1 + 1 + 1 + 1} \right)\] that is equal to \[4\], and from third position of left and right this is of the form \[\left( {1 + 1 + 1 = 3} \right)\] and from second portion of left and right this is of the form \[\left( {1 + 1 = 2} \right)\]
Also we can take ${11111^2}$ is equal to \[\;123454321\], answer should start and end with one and the middle term is \[\left( {1 + 1 + 1 + 1 + 1} \right)\] that is equal to\[5\], and from fourth position of left and right this is of the form \[\left( {1 + 1 + 1 + 1 = 4} \right)\] and from third position of left and right this is of the form \[\left( {1 + 1 + 1 = 3} \right)\] and from second portion of left and right this is of the form \[\left( {1 + 1 = 2} \right)\]
Similarly we can find up to any \[1`s\] number.
Hence ${111111^2} = 12345654321$.
Note:Here we can use many methods; in general, we can multiply it. In a short time it is best to decode it and using pattern method develop your analyse skills to deeper understand of making hidden patterns inside in it.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

