Answer
Verified
447.6k+ views
Hint:\[124\] is a composite number which is a positive integer that can be formed by multiplying two smaller positive integers.To write the set of even factors for a composite number and then we write all possible factors of 124 and finally we collect all even factors from it.
Complete step-by-step answer:
It is given that the number \[124\], we find the set of even factors of \[124\]
Firstly, take the set of factors of \[124 = \left\{ {1,2,4,31,6\left. {2,124} \right\}} \right.\]
$\begin{gathered}
1 \times 124 = 124 \\
2 \times 62 = 124 \\
4 \times 31 = 124 \\
62 \times 2 = 124 \\
124 \times 1 = 124 \\
\end{gathered} $
Take the set \[\left\{ {1,2,4,31,6\left. {2,124} \right\}} \right.\]
The numbers \[2,4,62,124\] are even
Therefore \[\left\{ {2,4,62,124} \right\}\] are the set of even factors of \[14\].
Additional Information:To check the above step is right or not, use prime factorization method, that is, for any number prime numbers multiply together to make the original number,
Here $124 = {2^2} \times 31$ are the prime numbers multiply together to make \[124\]
For any number, the prime factorization will be $ = {2^p} \times {3^q} \times {5^r} \times {7^s}...$ where \[{\mathbf{p}},{\mathbf{q}},{\mathbf{r}},{\mathbf{s}}\] are the powers (can be different powers)
To find the number of factors for any number,
$\left( {p + 1} \right) \times \left( {q + 1} \right) \times \left( {r + 1} \right) \times \left( {s + 1} \right)...$ then \[\left( {2 + 1} \right)\left( {1 + 1} \right) = 6\],
There are totally 6 factors, which is equal to \[\left\{ {1,2,4,31,62,124} \right\}\].
So, the number of even factors to the number \[ = p\;\left( {q + 1} \right)\;\left( {r + 1} \right)\]
\[ = 2\left( {1 + 1} \right) = 4\],
There are totally \[4\] even factors, that is \[\left\{ {2,4,62,124} \right\}\].
Hence the set of all even factors of \[124\] is \[\left\{ {2,4,62,124\} } \right.\]
Note:For any number, there will be many factor for the number, that may be odd or even factor depending on the number, but we can notice that,\[\;1\] is factor for all numbers, and then\[\;2\;\] is factor for all even numbers, example: \[4 = {2^2}\], \[6 = 2 \times 3\] and so on. So that for even numbers \[1\] and \[2\] is an essential factor for even numbers, at the same time, \[2\] is the only essential factor for even numbers.
Complete step-by-step answer:
It is given that the number \[124\], we find the set of even factors of \[124\]
Firstly, take the set of factors of \[124 = \left\{ {1,2,4,31,6\left. {2,124} \right\}} \right.\]
$\begin{gathered}
1 \times 124 = 124 \\
2 \times 62 = 124 \\
4 \times 31 = 124 \\
62 \times 2 = 124 \\
124 \times 1 = 124 \\
\end{gathered} $
Take the set \[\left\{ {1,2,4,31,6\left. {2,124} \right\}} \right.\]
The numbers \[2,4,62,124\] are even
Therefore \[\left\{ {2,4,62,124} \right\}\] are the set of even factors of \[14\].
Additional Information:To check the above step is right or not, use prime factorization method, that is, for any number prime numbers multiply together to make the original number,
Here $124 = {2^2} \times 31$ are the prime numbers multiply together to make \[124\]
For any number, the prime factorization will be $ = {2^p} \times {3^q} \times {5^r} \times {7^s}...$ where \[{\mathbf{p}},{\mathbf{q}},{\mathbf{r}},{\mathbf{s}}\] are the powers (can be different powers)
To find the number of factors for any number,
$\left( {p + 1} \right) \times \left( {q + 1} \right) \times \left( {r + 1} \right) \times \left( {s + 1} \right)...$ then \[\left( {2 + 1} \right)\left( {1 + 1} \right) = 6\],
There are totally 6 factors, which is equal to \[\left\{ {1,2,4,31,62,124} \right\}\].
So, the number of even factors to the number \[ = p\;\left( {q + 1} \right)\;\left( {r + 1} \right)\]
\[ = 2\left( {1 + 1} \right) = 4\],
There are totally \[4\] even factors, that is \[\left\{ {2,4,62,124} \right\}\].
Hence the set of all even factors of \[124\] is \[\left\{ {2,4,62,124\} } \right.\]
Note:For any number, there will be many factor for the number, that may be odd or even factor depending on the number, but we can notice that,\[\;1\] is factor for all numbers, and then\[\;2\;\] is factor for all even numbers, example: \[4 = {2^2}\], \[6 = 2 \times 3\] and so on. So that for even numbers \[1\] and \[2\] is an essential factor for even numbers, at the same time, \[2\] is the only essential factor for even numbers.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE