
Write the relationship between-
(i) kgf and newton
(ii) gf and dyne
Answer
559.5k+ views
Hint:All the given units are units of force. Kgf is the gravitational metric unit, and Newton is S.I. unit of force, gf is a metric unit of force, and dyne is the unit of force in a centimeter-gram-second system. We will be establishing the relationship between all the given units by converting them into the S.I. unit system.
Complete step by step answer:
(i) One kilogram-force (kgf) is the value of force due to gravity on a body of mass \[1{\rm{ kg}}\]. Mathematically, we can write:
\[1{\rm{ kgf}} = mg\]……(1)
Here m is the mass of the body, and g is the acceleration due to gravity.
We know that the value of acceleration due to gravity is \[9.81{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\].
Substitute \[9.81{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\] for g and \[1{\rm{ kg}}\] for m in equation (1).
\[
1{\rm{ kgf}} = \left( {1{\rm{ kg}}} \right)\left( {9.81{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}} \right)\\
\Rightarrow 1{\rm{ kgf}} = 9.81{{{\rm{ kg}} \cdot {\rm{m}}} {\left/
{\vphantom {{{\rm{ kg}} \cdot {\rm{m}}} {{{\rm{s}}^2} \times \left( {\dfrac{{\rm{N}}}{{{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}} \right)}}} \right.
} {{{\rm{s}}^2} \times \left( {\dfrac{{\rm{N}}}{{{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}} \right)}}\\
\Rightarrow 1{\rm{ kgf}} = 9.81{\rm{ N}}
\]
(ii) Gram force (gf) is the value of force due to gravity on a body of mass \[1{\rm{ g}}\].
\[1{\rm{ gf}} = {m_1}g\]
Here \[{m_1}\] is the mass of the body.
Substitute \[9.81{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\] for g and \[1{\rm{ g}}\] for \[{m_1}\] in the above expression.
\[
1{\rm{ gf}} = \left( {1{\rm{ g}}} \right)\left( {9.81{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}} \right)\\
\Rightarrow 1{\rm{ gf}} = 9.81{\rm{ g}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}} \times \left( {\dfrac{{{\rm{kg}}}}{{1000{\rm{ g}}}}} \right)\\
\Rightarrow 1{\rm{ gf}} = 9.81 \times {10^{ - 3}}{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}} \times \left( {\dfrac{{\rm{N}}}{{{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}} \right)\\
\Rightarrow 1{\rm{ gf}} = 981 \times {10^{ - 5}}{\rm{ N}}\]……(2)
We know that the value of dyne in terms of newton is given as:
\[1{\rm{ dyne}} = {10^{ - 5}}{\rm{ N}}\]
Substitute \[1{\rm{ dyn}}\] for \[{10^{ - 5}}{\rm{ N}}\] in equation (2).
\[
1{\rm{ gf}} = 981 \times \left( {1{\rm{ dyn}}} \right)\\
\therefore 1{\rm{ gf}} = 981{\rm{ dyn}}
\]
Therefore, the relation between one kgf is equal to \[9.81{\rm{ N}}\] , and one gf is equal to \[981{\rm{ dyn}}\].
Note: It would be better if we remember converting units of force into different units of units.There are various systems of units such as the centimetre-gram-second (CGS) system, foot-pound-second (FPS) system, and system Internationale (S.I.) system. But the S.I. the unit system is mostly followed by mathematicians and scientists.
Complete step by step answer:
(i) One kilogram-force (kgf) is the value of force due to gravity on a body of mass \[1{\rm{ kg}}\]. Mathematically, we can write:
\[1{\rm{ kgf}} = mg\]……(1)
Here m is the mass of the body, and g is the acceleration due to gravity.
We know that the value of acceleration due to gravity is \[9.81{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\].
Substitute \[9.81{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\] for g and \[1{\rm{ kg}}\] for m in equation (1).
\[
1{\rm{ kgf}} = \left( {1{\rm{ kg}}} \right)\left( {9.81{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}} \right)\\
\Rightarrow 1{\rm{ kgf}} = 9.81{{{\rm{ kg}} \cdot {\rm{m}}} {\left/
{\vphantom {{{\rm{ kg}} \cdot {\rm{m}}} {{{\rm{s}}^2} \times \left( {\dfrac{{\rm{N}}}{{{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}} \right)}}} \right.
} {{{\rm{s}}^2} \times \left( {\dfrac{{\rm{N}}}{{{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}} \right)}}\\
\Rightarrow 1{\rm{ kgf}} = 9.81{\rm{ N}}
\]
(ii) Gram force (gf) is the value of force due to gravity on a body of mass \[1{\rm{ g}}\].
\[1{\rm{ gf}} = {m_1}g\]
Here \[{m_1}\] is the mass of the body.
Substitute \[9.81{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\] for g and \[1{\rm{ g}}\] for \[{m_1}\] in the above expression.
\[
1{\rm{ gf}} = \left( {1{\rm{ g}}} \right)\left( {9.81{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}} \right)\\
\Rightarrow 1{\rm{ gf}} = 9.81{\rm{ g}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}} \times \left( {\dfrac{{{\rm{kg}}}}{{1000{\rm{ g}}}}} \right)\\
\Rightarrow 1{\rm{ gf}} = 9.81 \times {10^{ - 3}}{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}} \times \left( {\dfrac{{\rm{N}}}{{{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}} \right)\\
\Rightarrow 1{\rm{ gf}} = 981 \times {10^{ - 5}}{\rm{ N}}\]……(2)
We know that the value of dyne in terms of newton is given as:
\[1{\rm{ dyne}} = {10^{ - 5}}{\rm{ N}}\]
Substitute \[1{\rm{ dyn}}\] for \[{10^{ - 5}}{\rm{ N}}\] in equation (2).
\[
1{\rm{ gf}} = 981 \times \left( {1{\rm{ dyn}}} \right)\\
\therefore 1{\rm{ gf}} = 981{\rm{ dyn}}
\]
Therefore, the relation between one kgf is equal to \[9.81{\rm{ N}}\] , and one gf is equal to \[981{\rm{ dyn}}\].
Note: It would be better if we remember converting units of force into different units of units.There are various systems of units such as the centimetre-gram-second (CGS) system, foot-pound-second (FPS) system, and system Internationale (S.I.) system. But the S.I. the unit system is mostly followed by mathematicians and scientists.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

