Write the quotient when the difference of a two-digit number 73 and number obtained by reversing the digits is divided by
(i) 9
(ii) the difference of digits.
Answer
279.6k+ views
Hint: Here, we can see that we are given a two-digit number 73. We know that the digit 3 is in one place, and the digit 7 is in the tens place.
We can clearly say that, in the number obtained on reversing the digits, the digit at one's place will be 7 and the digit at tens place will be 3. Thus, the reversed number is 37.
Complete step by step answer:
According to the question, we now need to find the difference between our original number and the reversed number.
We can see that
73 – 37 = 36.
(i) In this part, the difference needs to be divided by 9. Thus, we need to divide 36 by 9.
We know that $\dfrac{36}{9}=4$.
Hence, 4 is the quotient when the difference of a two-digit number 73 and number obtained by reversing the digits is divided by 9.
(ii) In this part, the difference needs to be divided by the difference of digits.
We know that the difference of digits, 7 – 3 = 4.
Thus, we need to divide 36 by 4.
We know that $\dfrac{36}{4}=9$.
Hence, 9 is the quotient when the difference of a two-digit number 73 and number obtained by reversing the digits is divided by the difference of digits.
Note: Here, in the (ii) part of this question, it is really important to understand that the phrase ‘difference of digits’ means the difference between the digits of our original number, that is, difference between the digits 7 and 3, which is equal to 4.
We can clearly say that, in the number obtained on reversing the digits, the digit at one's place will be 7 and the digit at tens place will be 3. Thus, the reversed number is 37.
Complete step by step answer:
According to the question, we now need to find the difference between our original number and the reversed number.
We can see that
73 – 37 = 36.
(i) In this part, the difference needs to be divided by 9. Thus, we need to divide 36 by 9.
We know that $\dfrac{36}{9}=4$.
Hence, 4 is the quotient when the difference of a two-digit number 73 and number obtained by reversing the digits is divided by 9.
(ii) In this part, the difference needs to be divided by the difference of digits.
We know that the difference of digits, 7 – 3 = 4.
Thus, we need to divide 36 by 4.
We know that $\dfrac{36}{4}=9$.
Hence, 9 is the quotient when the difference of a two-digit number 73 and number obtained by reversing the digits is divided by the difference of digits.
Note: Here, in the (ii) part of this question, it is really important to understand that the phrase ‘difference of digits’ means the difference between the digits of our original number, that is, difference between the digits 7 and 3, which is equal to 4.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
The ray passing through the of the lens is not deviated class 10 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

What is the nlx method How is it useful class 11 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
