
Write the Maclaurin series for $\tan ^{-1} x$.
Answer
480.6k+ views
Hint: In this question, we need to find the Maclaurin Series for \[{\tan ^{ - 1}}x\] .For this, we will find some derivatives of \[{\tan ^{ - 1}}x\] as if \[f\left( x \right) = {\tan ^{ - 1}}x\] then we will find the values of \[{f'}\left( x \right),{f^{''}}\left( x \right),{f^{'''}}\left( x \right),{f^{iv}}\left( x \right),....\] After that we will find out the values of \[f\left( 0 \right),{\text{ }}{f'}\left( 0 \right),{\text{ }}{f^{''}}\left( 0 \right),{\text{ }}{f^{'''}}\left( 0 \right),{\text{ }}{f^{iv}}\left( x \right){\text{, }}.....\] And finally we will use the formula of Maclaurin series to evaluate our answer.
Formula of Maclaurin series is:
\[f\left( x \right) = f\left( 0 \right) + {f'}\left( 0 \right)x + \dfrac{{{f^{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{{f^{iv}}\left( 0 \right)}}{{4!}}{x^4} + ......\]
Complete step-by-step answer:
Here we are given the function as \[{\tan ^{ - 1}}x\]
i.e., \[f\left( x \right) = {\tan ^{ - 1}}x\]
and we have to find the Maclaurin’s series for \[{\tan ^{ - 1}}x\]
Now, we know that Maclaurin series for a function \[f\left( x \right)\] is given by:
\[f\left( x \right) = f\left( 0 \right) + {f'}\left( 0 \right)x + \dfrac{{{f^{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{{f^{iv}}\left( 0 \right)}}{{4!}}{x^4} + ......{\text{ }}\]
So, let us first evaluate the values of some of its derivatives as
\[{f'}\left( x \right),{\text{ }}{f^{''}}\left( x \right),{\text{ }}{f^{'''}}\left( x \right),{\text{ }}{f^{iv}}\left( x \right),....\]
So, we have \[f\left( x \right) = {\tan ^{ - 1}}x{\text{ }} - - - \left( 1 \right)\]
Differentiating \[f\left( x \right)\] with respect to \[x\] we get
\[{f'}\left( x \right) = \dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}}\]
As we know that, \[\dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{1 + {x^2}}}\]
So, we have
\[{f'}\left( x \right) = \dfrac{1}{{\left( {1 + {x^2}} \right)}} = {\left( {1 + {x^2}} \right)^{ - 1}} - - - \left( 2 \right)\]
Again differentiating \[{f'}\left( x \right)\] with respect to \[x\] we get
\[{f^{''}}\left( x \right) = \dfrac{d}{{dx}}\left( {{{\left( {1 + {x^2}} \right)}^{ - 1}}} \right)\]
\[ \Rightarrow {f^{''}}\left( x \right) = - {\left( {1 + {x^2}} \right)^{ - 2}}2x - - - \left( 3 \right)\]
Now, differentiating \[{f^{''}}\left( x \right)\] with respect to \[x\] we get,
\[{f^{'''}}\left( x \right) = \dfrac{d}{{dx}}\left( { - {{\left( {1 + {x^2}} \right)}^{ - 2}}2x} \right)\]
Using product rule i.e., \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\] we get
\[{f^{'''}}\left( x \right) = - {\left( {1 + {x^2}} \right)^{ - 2}} \cdot 2{\text{ }} + {\text{ }}2x\left( {2{{\left( {1 + {x^2}} \right)}^{ - 3}} \cdot 2x} \right)\]
Taking common \[{\left( {1 + {x^2}} \right)^{ - 2}}\] , we get
\[{f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( { - 2 + 8{x^2}{{\left( {1 + {x^2}} \right)}^{ - 1}}} \right)\]
\[ \Rightarrow {f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( { - 2 + \dfrac{{8{x^2}}}{{\left( {1 + {x^2}} \right)}}} \right)\]
On simplifying it, we get
\[ \Rightarrow {f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( {\dfrac{{ - 2 - 2{x^2} + 8{x^2}}}{{\left( {1 + {x^2}} \right)}}} \right)\]
\[ \Rightarrow {f^{'''}}\left( x \right) = \left( {6{x^2} - 2} \right){\left( {1 + {x^2}} \right)^{ - 3}}{\text{ }} - - - \left( 4 \right)\]
Now, differentiating \[{f^{'''}}\left( x \right)\] with respect to \[x\] we get,
\[{f^{iv}}\left( x \right) = \dfrac{d}{{dx}}\left( {\left( {6{x^2} - 2} \right){{\left( {1 + {x^2}} \right)}^{ - 3}}} \right){\text{ }}\]
Using product rule, we get
\[{f^{iv}}\left( x \right) = \left( {6{x^2} - 2} \right)\left( { - 3{{\left( {1 + {x^2}} \right)}^{ - 4}}2x} \right) + {\left( {1 + {x^2}} \right)^{ - 3}}\left( {12x} \right)\]
Taking common \[{\left( {1 + {x^2}} \right)^{ - 3}}\] , we get
\[{f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 3}}\left[ {\dfrac{{\left( {6{x^2} - 2} \right)\left( { - 6x} \right)}}{{\left( {1 + {x^2}} \right)}} + 12x} \right]\]
\[ \Rightarrow {f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 3}}\dfrac{{\left[ { - 36{x^3} + 12x + 12x + 12{x^3}} \right]}}{{\left( {1 + {x^2}} \right)}}\]
On simplifying it, we get
\[{f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 4}}\left( { - 24{x^3} + 24x} \right)\]
\[ \Rightarrow {f^{iv}}\left( x \right) = - 24x\left( {{x^2} - 1} \right){\left( {1 + {x^2}} \right)^{ - 4}}{\text{ }} - - - \left( 5 \right)\]
and so on….
Now, we will find out the values of \[f\left( 0 \right),{\text{ }}{f'}\left( 0 \right),{\text{ }}{f^{''}}\left( 0 \right),{\text{ }}{f^{'''}}\left( 0 \right),{\text{ }}{f^{iv}}\left( 0 \right){\text{,}}.....\]
So, from equation \[\left( 1 \right)\] on putting \[x = 0\] we get
\[f\left( 0 \right) = {\tan ^{ - 1}}\left( 0 \right){\text{ = 0 }}\]
From equation \[\left( 2 \right)\] on putting \[x = 0\] we get
\[{f'}\left( 0 \right) = \dfrac{1}{{\left( {1 + {0^2}} \right)}} = {\left( {1 + {0^2}} \right)^{ - 1}} = 1\]
Similarly, from equation \[\left( 3 \right)\] on putting \[x = 0\] we get
\[{f^{''}}\left( 0 \right) = - {\left( {1 + {0^2}} \right)^{ - 2}}2\left( 0 \right) = 0\]
Now, from equation \[\left( 4 \right)\] on putting \[x = 0\] we get
\[{f^{'''}}\left( 0 \right) = \left( {6{{\left( 0 \right)}^2} - 2} \right){\left( {1 + {0^2}} \right)^{ - 3}} = - 2\]
and from equation \[\left( 5 \right)\] on putting \[x = 0\] we get
\[ \Rightarrow {f^{iv}}\left( 0 \right) = - 24\left( 0 \right)\left( {{0^2} - 1} \right){\left( {1 + {0^2}} \right)^{ - 4}} = 0\]
Putting all these values in Maclaurin series, we get
\[{\tan ^{ - 1}}x = 0 + x\left( 1 \right) + \dfrac{{{x^2}}}{{2!}}\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}\left( { - 2} \right) + \dfrac{{{x^4}}}{{4!}}\left( 0 \right) + ......\]
\[ \Rightarrow {\tan ^{ - 1}}x = x - 2\dfrac{{{x^3}}}{{3!}} + ......\]
Now we know that,
\[n! = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot ......3 \cdot 2 \cdot 1\]
So, expanding \[3! = 3 \cdot 2 \cdot 1 = 6\] we get
\[ \Rightarrow {\tan ^{ - 1}}x = x - 2\dfrac{{{x^3}}}{6} + ......\]
\[ \Rightarrow {\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]
Therefore, the Maclaurin series for \[{\tan ^{ - 1}}x\] is given as,
\[{\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]
So, the correct answer is “\[{\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]”.
Note: Students should take care while finding all the derivatives. Also, they should note that all even values will be equal to \[0\] ,so we have the Maclaurin series in odd order only as well as there is an alternative sign between the terms. Also, they can find more functions to increase the expansion.
Formula of Maclaurin series is:
\[f\left( x \right) = f\left( 0 \right) + {f'}\left( 0 \right)x + \dfrac{{{f^{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{{f^{iv}}\left( 0 \right)}}{{4!}}{x^4} + ......\]
Complete step-by-step answer:
Here we are given the function as \[{\tan ^{ - 1}}x\]
i.e., \[f\left( x \right) = {\tan ^{ - 1}}x\]
and we have to find the Maclaurin’s series for \[{\tan ^{ - 1}}x\]
Now, we know that Maclaurin series for a function \[f\left( x \right)\] is given by:
\[f\left( x \right) = f\left( 0 \right) + {f'}\left( 0 \right)x + \dfrac{{{f^{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{{f^{iv}}\left( 0 \right)}}{{4!}}{x^4} + ......{\text{ }}\]
So, let us first evaluate the values of some of its derivatives as
\[{f'}\left( x \right),{\text{ }}{f^{''}}\left( x \right),{\text{ }}{f^{'''}}\left( x \right),{\text{ }}{f^{iv}}\left( x \right),....\]
So, we have \[f\left( x \right) = {\tan ^{ - 1}}x{\text{ }} - - - \left( 1 \right)\]
Differentiating \[f\left( x \right)\] with respect to \[x\] we get
\[{f'}\left( x \right) = \dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}}\]
As we know that, \[\dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{1 + {x^2}}}\]
So, we have
\[{f'}\left( x \right) = \dfrac{1}{{\left( {1 + {x^2}} \right)}} = {\left( {1 + {x^2}} \right)^{ - 1}} - - - \left( 2 \right)\]
Again differentiating \[{f'}\left( x \right)\] with respect to \[x\] we get
\[{f^{''}}\left( x \right) = \dfrac{d}{{dx}}\left( {{{\left( {1 + {x^2}} \right)}^{ - 1}}} \right)\]
\[ \Rightarrow {f^{''}}\left( x \right) = - {\left( {1 + {x^2}} \right)^{ - 2}}2x - - - \left( 3 \right)\]
Now, differentiating \[{f^{''}}\left( x \right)\] with respect to \[x\] we get,
\[{f^{'''}}\left( x \right) = \dfrac{d}{{dx}}\left( { - {{\left( {1 + {x^2}} \right)}^{ - 2}}2x} \right)\]
Using product rule i.e., \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\] we get
\[{f^{'''}}\left( x \right) = - {\left( {1 + {x^2}} \right)^{ - 2}} \cdot 2{\text{ }} + {\text{ }}2x\left( {2{{\left( {1 + {x^2}} \right)}^{ - 3}} \cdot 2x} \right)\]
Taking common \[{\left( {1 + {x^2}} \right)^{ - 2}}\] , we get
\[{f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( { - 2 + 8{x^2}{{\left( {1 + {x^2}} \right)}^{ - 1}}} \right)\]
\[ \Rightarrow {f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( { - 2 + \dfrac{{8{x^2}}}{{\left( {1 + {x^2}} \right)}}} \right)\]
On simplifying it, we get
\[ \Rightarrow {f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( {\dfrac{{ - 2 - 2{x^2} + 8{x^2}}}{{\left( {1 + {x^2}} \right)}}} \right)\]
\[ \Rightarrow {f^{'''}}\left( x \right) = \left( {6{x^2} - 2} \right){\left( {1 + {x^2}} \right)^{ - 3}}{\text{ }} - - - \left( 4 \right)\]
Now, differentiating \[{f^{'''}}\left( x \right)\] with respect to \[x\] we get,
\[{f^{iv}}\left( x \right) = \dfrac{d}{{dx}}\left( {\left( {6{x^2} - 2} \right){{\left( {1 + {x^2}} \right)}^{ - 3}}} \right){\text{ }}\]
Using product rule, we get
\[{f^{iv}}\left( x \right) = \left( {6{x^2} - 2} \right)\left( { - 3{{\left( {1 + {x^2}} \right)}^{ - 4}}2x} \right) + {\left( {1 + {x^2}} \right)^{ - 3}}\left( {12x} \right)\]
Taking common \[{\left( {1 + {x^2}} \right)^{ - 3}}\] , we get
\[{f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 3}}\left[ {\dfrac{{\left( {6{x^2} - 2} \right)\left( { - 6x} \right)}}{{\left( {1 + {x^2}} \right)}} + 12x} \right]\]
\[ \Rightarrow {f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 3}}\dfrac{{\left[ { - 36{x^3} + 12x + 12x + 12{x^3}} \right]}}{{\left( {1 + {x^2}} \right)}}\]
On simplifying it, we get
\[{f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 4}}\left( { - 24{x^3} + 24x} \right)\]
\[ \Rightarrow {f^{iv}}\left( x \right) = - 24x\left( {{x^2} - 1} \right){\left( {1 + {x^2}} \right)^{ - 4}}{\text{ }} - - - \left( 5 \right)\]
and so on….
Now, we will find out the values of \[f\left( 0 \right),{\text{ }}{f'}\left( 0 \right),{\text{ }}{f^{''}}\left( 0 \right),{\text{ }}{f^{'''}}\left( 0 \right),{\text{ }}{f^{iv}}\left( 0 \right){\text{,}}.....\]
So, from equation \[\left( 1 \right)\] on putting \[x = 0\] we get
\[f\left( 0 \right) = {\tan ^{ - 1}}\left( 0 \right){\text{ = 0 }}\]
From equation \[\left( 2 \right)\] on putting \[x = 0\] we get
\[{f'}\left( 0 \right) = \dfrac{1}{{\left( {1 + {0^2}} \right)}} = {\left( {1 + {0^2}} \right)^{ - 1}} = 1\]
Similarly, from equation \[\left( 3 \right)\] on putting \[x = 0\] we get
\[{f^{''}}\left( 0 \right) = - {\left( {1 + {0^2}} \right)^{ - 2}}2\left( 0 \right) = 0\]
Now, from equation \[\left( 4 \right)\] on putting \[x = 0\] we get
\[{f^{'''}}\left( 0 \right) = \left( {6{{\left( 0 \right)}^2} - 2} \right){\left( {1 + {0^2}} \right)^{ - 3}} = - 2\]
and from equation \[\left( 5 \right)\] on putting \[x = 0\] we get
\[ \Rightarrow {f^{iv}}\left( 0 \right) = - 24\left( 0 \right)\left( {{0^2} - 1} \right){\left( {1 + {0^2}} \right)^{ - 4}} = 0\]
Putting all these values in Maclaurin series, we get
\[{\tan ^{ - 1}}x = 0 + x\left( 1 \right) + \dfrac{{{x^2}}}{{2!}}\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}\left( { - 2} \right) + \dfrac{{{x^4}}}{{4!}}\left( 0 \right) + ......\]
\[ \Rightarrow {\tan ^{ - 1}}x = x - 2\dfrac{{{x^3}}}{{3!}} + ......\]
Now we know that,
\[n! = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot ......3 \cdot 2 \cdot 1\]
So, expanding \[3! = 3 \cdot 2 \cdot 1 = 6\] we get
\[ \Rightarrow {\tan ^{ - 1}}x = x - 2\dfrac{{{x^3}}}{6} + ......\]
\[ \Rightarrow {\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]
Therefore, the Maclaurin series for \[{\tan ^{ - 1}}x\] is given as,
\[{\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]
So, the correct answer is “\[{\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]”.
Note: Students should take care while finding all the derivatives. Also, they should note that all even values will be equal to \[0\] ,so we have the Maclaurin series in odd order only as well as there is an alternative sign between the terms. Also, they can find more functions to increase the expansion.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

