   Question Answers

# Write the general form of a quadratic polynomial.  Hint- Here, we will proceed by defining the quadratic polynomial and then writing down the general form of any quadratic polynomial in three variables (x, y and z), in two variables (x and y) and in one variable (x).

A quadratic polynomial is a polynomial of degree 2 or simply we can say that a quadratic polynomial is a polynomial function with one or more variables in which the highest degree term is of the second degree.
The general form of any quadratic polynomial in three variables i.e., x, y and z is given as under
$f\left( {x,y,z} \right) = a{x^2} + b{y^2} + c{z^2} + dxy + eyz + fxz + gx + hy + iz + j$ where a, b, c, d, e, f, g, h, i, j are all constants.
The general form of any quadratic polynomial in two variables i.e., x and y is given as under
$f\left( {x,y} \right) = a{x^2} + b{y^2} + cxy + dx + ey + f$ where a, b, c, d, e, f are all constants.
The general form of any quadratic polynomial in one variable i.e., x is given as under
$f\left( x \right) = a{x^2} + bx + c$ where a, b, c are all constants.
When these polynomials are equated with zero, then that equation is termed as a quadratic equation.
The general form of any quadratic equation in three variables i.e., x, y and z is given as under
$f\left( {x,y,z} \right) = a{x^2} + b{y^2} + c{z^2} + dxy + eyz + fxz + gx + hy + iz + j = 0$ where a, b, c, d, e, f, g, h, i, j are all constants.
The general form of any quadratic equation in two variables i.e., x and y is given as under
$f\left( {x,y} \right) = a{x^2} + b{y^2} + cxy + dx + ey + f = 0$ where a, b, c, d, e, f are all constants.
The general form of any quadratic equation in one variable i.e., x is given as under
$f\left( x \right) = a{x^2} + bx + c = 0$ where a, b, c are all constants.

Note- In this particular problem, out of all the quadratic polynomials the general form of quadratic polynomial in one variable is usually used. The solution of the quadratic equation in one variable i.e., $f\left( x \right) = a{x^2} + bx + c = 0$ is either solved by factorization method or by discriminant method.

View Notes
CBSE Class 10 Maths Chapter 4 - Quadratic Equations Formula    CBSE Class 8 Maths Chapter 2 - Linear Equations in One Variable Formulas  The Making of a Scientist  General Principles and Processes of Isolation of Elements  Changing the Period of a Pendulum  Table of 8 - Multiplication Table of 8  CBSE Class 12 Maths Chapter-8 Application of Integrals Formula  CBSE Class 8 Maths Formulas  Square Root of 8  Important Questions for CBSE Class 10 Maths Chapter 4 - Quadratic Equations  Important Questions for CBSE Class 11 Maths Chapter 5 - Complex Numbers and Quadratic Equations  Important Questions for CBSE Class 6 English A Pact with The Sun Chapter 8 - A Pact with the Sun  CBSE Class 8 Science Reaching The Age of Adolescence Worksheets  Important Questions for CBSE Class 6 English Honeysuckle Chapter 8 - A Game of Chance  Important Questions for CBSE Class 8 Social Science Our Past 3 Chapter 4 - Tribals, Dikus and the Vision of a Golden Age  Important Questions for CBSE Class 8 Maths Chapter 8 - Comparing Quantities  Important Questions for CBSE Class 8 English Honeydew Chapter 3 - Glimpses of the Past  Important Questions for CBSE Class 8 English Honeydew Chapter 8 - A Short Monsoon Diary  Important Questions for CBSE Class 8 Science Chapter 10 - Reaching The Age of Adolescence  CBSE Class 10 Hindi A Question Paper 2020  Hindi A Class 10 CBSE Question Paper 2009  Hindi A Class 10 CBSE Question Paper 2015  Hindi A Class 10 CBSE Question Paper 2007  Hindi A Class 10 CBSE Question Paper 2013  Hindi A Class 10 CBSE Question Paper 2016  Hindi A Class 10 CBSE Question Paper 2012  Hindi A Class 10 CBSE Question Paper 2010  Hindi A Class 10 CBSE Question Paper 2008  Hindi A Class 10 CBSE Question Paper 2014  RD Sharma Solutions for Class 10 Maths Chapter 8 - Quadratic Equations  NCERT Solutions for Class 10 Maths Chapter 4 Quadratic Equations  RS Aggarwal Class 10 Solutions - Quadratic Equations  NCERT Solutions for Class 11 Maths Chapter 5  RD Sharma Class 11 Maths Solutions Chapter 14 - Quadratic Equations  NCERT Exemplar for Class 10 Maths Chapter 4 - Quadratic Equations (Book Solutions)  NCERT Solutions for Class 10 Maths Chapter 4 Quadratic Equations in Hindi  RS Aggarwal Class 8 Mathematics Solutions for Chapter-18 Area of a Trapezium and a Polygon  NCERT Solutions for Class 10 Maths Chapter 4 Quadratic Equations (Ex 4.4) Exercise 4.4  RS Aggarwal Solutions Class 8 Chapter-8 Linear Equations (Ex 8B) Exercise 8.2  