
Write the formula of $\cos 3A$?
Answer
511.2k+ views
Hint: We first find the simplification of the given trigonometry $\cos 3A$ according to the identity $\cos 2A=2{{\cos }^{2}}A-1$ and $\sin \left( 2A \right)=2\sin A\cos A$. We need to simplify the angle as a sum of two angles. We already have the identity of $\cos \left( X+Y \right)=\cos X\cos Y-\sin A\sin B$. We replace the values with $X=2A,Y=A$ to find the final solution.
Complete step-by-step answer:
We need to find the simplified form of $\cos 3A$. This is the multiple angle formula. We know that $\cos 2A=2{{\cos }^{2}}A-1$. We also have $\sin \left( 2A \right)=2\sin A\cos A$.
We need to take the term $\left( 2A+A \right)$ on both sides of the identity $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$.
On the right side we have
$\begin{align}
& \cos \left( 2A+A \right)=\cos \left( 2A \right)\cos A-\sin A\sin \left( 2A \right) \\
& \Rightarrow \cos \left( 3A \right)=\left( 2{{\cos }^{2}}A-1 \right)\cos A-\sin A\left( 2\sin A\cos A \right) \\
\end{align}$
We simplify the equation to get
$\begin{align}
& \cos \left( 3A \right)=\left( 2{{\cos }^{2}}A-1 \right)\cos A-\sin A\left( 2\sin A\cos A \right) \\
& \Rightarrow \cos \left( 3A \right)=2{{\cos }^{3}}A-\cos A-2{{\sin }^{2}}A\cos A \\
\end{align}$
We now replace the value with ${{\sin }^{2}}A=1-{{\cos }^{2}}A$.
We get
$\begin{align}
& \cos \left( 3A \right)=2{{\cos }^{3}}A-\cos A-2\left( 1-{{\cos }^{2}}A \right)\cos A \\
& \Rightarrow \cos \left( 3A \right)=2{{\cos }^{3}}A-\cos A-2\cos A+2{{\cos }^{3}}A \\
& \Rightarrow \cos \left( 3A \right)=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
Therefore, the formula of $\cos 3A$ is $\cos \left( 3A \right)=4{{\cos }^{3}}A-3\cos A$.
Note: The trigonometric functions of multiple angles are the multiple angle formula. Double and triple angles formulas are there under the multiple angle formulas. Sine, tangent and cosine are the general functions for the multiple angle formula.
Complete step-by-step answer:
We need to find the simplified form of $\cos 3A$. This is the multiple angle formula. We know that $\cos 2A=2{{\cos }^{2}}A-1$. We also have $\sin \left( 2A \right)=2\sin A\cos A$.
We need to take the term $\left( 2A+A \right)$ on both sides of the identity $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$.
On the right side we have
$\begin{align}
& \cos \left( 2A+A \right)=\cos \left( 2A \right)\cos A-\sin A\sin \left( 2A \right) \\
& \Rightarrow \cos \left( 3A \right)=\left( 2{{\cos }^{2}}A-1 \right)\cos A-\sin A\left( 2\sin A\cos A \right) \\
\end{align}$
We simplify the equation to get
$\begin{align}
& \cos \left( 3A \right)=\left( 2{{\cos }^{2}}A-1 \right)\cos A-\sin A\left( 2\sin A\cos A \right) \\
& \Rightarrow \cos \left( 3A \right)=2{{\cos }^{3}}A-\cos A-2{{\sin }^{2}}A\cos A \\
\end{align}$
We now replace the value with ${{\sin }^{2}}A=1-{{\cos }^{2}}A$.
We get
$\begin{align}
& \cos \left( 3A \right)=2{{\cos }^{3}}A-\cos A-2\left( 1-{{\cos }^{2}}A \right)\cos A \\
& \Rightarrow \cos \left( 3A \right)=2{{\cos }^{3}}A-\cos A-2\cos A+2{{\cos }^{3}}A \\
& \Rightarrow \cos \left( 3A \right)=4{{\cos }^{3}}A-3\cos A \\
\end{align}$
Therefore, the formula of $\cos 3A$ is $\cos \left( 3A \right)=4{{\cos }^{3}}A-3\cos A$.
Note: The trigonometric functions of multiple angles are the multiple angle formula. Double and triple angles formulas are there under the multiple angle formulas. Sine, tangent and cosine are the general functions for the multiple angle formula.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

