
How do you write the expression in standard form $a+ib$ given ${{\left( 1-i \right)}^{5}}$?
Answer
564.6k+ views
Hint: The above given question is the mixture of the concept of the complex number and the binomial expansion. From the complex number we will use the concept that $i=\sqrt{-1}$ , hence ${{i}^{2}}=-1$, ${{i}^{3}}=-\sqrt{-1}=-i$, and ${{i}^{4}}=1$. Hence, after ${{4}^{th}}$ power of $i$ value of $i$ goes on repeating it as in the previous 4 sequences. And, from binomial expansion we will use the concept of expansion of ${{\left( a+b \right)}^{n}}$ to expand ${{\left( 1-i \right)}^{5}}$ to that it can be written in standard form $a+ib$. The expansion of ${{\left( a+b \right)}^{n}}$ is given as \[{}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{b}^{3}}+........+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}\].
Complete step by step answer:
We will use the concept of binomial expansion and complex numbers both to solve the above question.
We can see from the question that we have to express ${{\left( 1-i \right)}^{5}}$ in standard form $a+ib$, and this is possible only if we write the expansion of ${{\left( 1-i \right)}^{5}}$.
Since, we know that the binomial expansion of ${{\left( a+b \right)}^{n}}$is given as:
${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{b}^{3}}+........+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}$
So, we can similarly expand ${{\left( 1-i \right)}^{5}}$, and we can see here a = 1, b = $-i$ and n = 5.
Thus, we can write ${{\left( 1-i \right)}^{5}}$ as:${{\left( 1-i \right)}^{5}}={}^{5}{{C}_{0}}\times {{1}^{5}}\times {{\left( -i \right)}^{0}}+{}^{5}{{C}_{1}}\times {{1}^{4}}\times \left( -i \right)+{}^{5}{{C}_{2}}\times {{1}^{3}}\times {{\left( -i \right)}^{2}}+{}^{5}{{C}_{3}}\times {{1}^{2}}\times {{\left( -i \right)}^{3}}+{}^{5}{{C}_{4}}\times 1\times {{\left( -i \right)}^{4}}+{}^{5}{{C}_{5}}\times {{1}^{0}}\times {{\left( -i \right)}^{5}}$
$\Rightarrow {{\left( 1-i \right)}^{5}}={}^{5}{{C}_{0}}-{}^{5}{{C}_{1}}\times i+{}^{5}{{C}_{2}}\times {{\left( i \right)}^{2}}-{}^{5}{{C}_{3}}\times {{\left( i \right)}^{3}}+{}^{5}{{C}_{4}}\times {{\left( i \right)}^{4}}-{}^{5}{{C}_{5}}\times {{\left( i \right)}^{5}}$
Now, from complex number we know that $i=\sqrt{-1}$, so we can write ${{i}^{2}}=-1$, ${{i}^{3}}=-\sqrt{-1}=-i$, ${{i}^{4}}=1$, also ${{i}^{5}}=1\times i=i$.
So, after substituting value of $i,{{i}^{2}},{{i}^{3}},{{i}^{4}},{{i}^{5}}$ in the above equation we will get:
$\Rightarrow {{\left( 1-i \right)}^{5}}={}^{5}{{C}_{0}}-{}^{5}{{C}_{1}}\times i+{}^{5}{{C}_{2}}\times \left( -1 \right)-{}^{5}{{C}_{3}}\times \left( -i \right)+{}^{5}{{C}_{4}}\times 1-{}^{5}{{C}_{5}}\times i$
We also know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$.
So, ${}^{5}{{C}_{0}}=\dfrac{5!}{0!\times \left( 5-0 \right)!}=1$, ${}^{5}{{C}_{1}}=\dfrac{5!}{1!\times \left( 5-1 \right)!}=\dfrac{5!}{4!}=5$, ${}^{5}{{C}_{2}}=\dfrac{5!}{2!\times \left( 5-2 \right)!}=\dfrac{5!}{2!\times 3!}=\dfrac{5\times 4}{2}=10$,
Similarly, ${}^{5}{{C}_{3}}=\dfrac{5!}{3!\times \left( 5-3 \right)!}=10$, ${}^{5}{{C}_{4}}=5$, and ${}^{5}{{C}_{5}}=1$.
So, after putting all of these we will get:
$\Rightarrow {{\left( 1-i \right)}^{5}}=1-5\times i+10\times \left( -1 \right)-10\times \left( -i \right)+5\times 1-1\times i$
$\Rightarrow {{\left( 1-i \right)}^{5}}=1-5i-10+10i+5-i$
$\Rightarrow {{\left( 1-i \right)}^{5}}=-4+4i$
Hence, ${{\left( 1-i \right)}^{5}}$ in standard form is given as $-4+4i$.
Note: Students are required to memorize the binomial expression formula. Also, note that we can write ${}^{n}{{C}_{r}}$ as ${}^{n}{{C}_{n-r}}$ because they both are equal. ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$ will always helps us to easily simply ${}^{n}{{C}_{r}}$.
Complete step by step answer:
We will use the concept of binomial expansion and complex numbers both to solve the above question.
We can see from the question that we have to express ${{\left( 1-i \right)}^{5}}$ in standard form $a+ib$, and this is possible only if we write the expansion of ${{\left( 1-i \right)}^{5}}$.
Since, we know that the binomial expansion of ${{\left( a+b \right)}^{n}}$is given as:
${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{b}^{3}}+........+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}$
So, we can similarly expand ${{\left( 1-i \right)}^{5}}$, and we can see here a = 1, b = $-i$ and n = 5.
Thus, we can write ${{\left( 1-i \right)}^{5}}$ as:${{\left( 1-i \right)}^{5}}={}^{5}{{C}_{0}}\times {{1}^{5}}\times {{\left( -i \right)}^{0}}+{}^{5}{{C}_{1}}\times {{1}^{4}}\times \left( -i \right)+{}^{5}{{C}_{2}}\times {{1}^{3}}\times {{\left( -i \right)}^{2}}+{}^{5}{{C}_{3}}\times {{1}^{2}}\times {{\left( -i \right)}^{3}}+{}^{5}{{C}_{4}}\times 1\times {{\left( -i \right)}^{4}}+{}^{5}{{C}_{5}}\times {{1}^{0}}\times {{\left( -i \right)}^{5}}$
$\Rightarrow {{\left( 1-i \right)}^{5}}={}^{5}{{C}_{0}}-{}^{5}{{C}_{1}}\times i+{}^{5}{{C}_{2}}\times {{\left( i \right)}^{2}}-{}^{5}{{C}_{3}}\times {{\left( i \right)}^{3}}+{}^{5}{{C}_{4}}\times {{\left( i \right)}^{4}}-{}^{5}{{C}_{5}}\times {{\left( i \right)}^{5}}$
Now, from complex number we know that $i=\sqrt{-1}$, so we can write ${{i}^{2}}=-1$, ${{i}^{3}}=-\sqrt{-1}=-i$, ${{i}^{4}}=1$, also ${{i}^{5}}=1\times i=i$.
So, after substituting value of $i,{{i}^{2}},{{i}^{3}},{{i}^{4}},{{i}^{5}}$ in the above equation we will get:
$\Rightarrow {{\left( 1-i \right)}^{5}}={}^{5}{{C}_{0}}-{}^{5}{{C}_{1}}\times i+{}^{5}{{C}_{2}}\times \left( -1 \right)-{}^{5}{{C}_{3}}\times \left( -i \right)+{}^{5}{{C}_{4}}\times 1-{}^{5}{{C}_{5}}\times i$
We also know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$.
So, ${}^{5}{{C}_{0}}=\dfrac{5!}{0!\times \left( 5-0 \right)!}=1$, ${}^{5}{{C}_{1}}=\dfrac{5!}{1!\times \left( 5-1 \right)!}=\dfrac{5!}{4!}=5$, ${}^{5}{{C}_{2}}=\dfrac{5!}{2!\times \left( 5-2 \right)!}=\dfrac{5!}{2!\times 3!}=\dfrac{5\times 4}{2}=10$,
Similarly, ${}^{5}{{C}_{3}}=\dfrac{5!}{3!\times \left( 5-3 \right)!}=10$, ${}^{5}{{C}_{4}}=5$, and ${}^{5}{{C}_{5}}=1$.
So, after putting all of these we will get:
$\Rightarrow {{\left( 1-i \right)}^{5}}=1-5\times i+10\times \left( -1 \right)-10\times \left( -i \right)+5\times 1-1\times i$
$\Rightarrow {{\left( 1-i \right)}^{5}}=1-5i-10+10i+5-i$
$\Rightarrow {{\left( 1-i \right)}^{5}}=-4+4i$
Hence, ${{\left( 1-i \right)}^{5}}$ in standard form is given as $-4+4i$.
Note: Students are required to memorize the binomial expression formula. Also, note that we can write ${}^{n}{{C}_{r}}$ as ${}^{n}{{C}_{n-r}}$ because they both are equal. ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$ will always helps us to easily simply ${}^{n}{{C}_{r}}$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

