
Write the expanded form of ${{\left( a+2b+c \right)}^{2}}$ .
Answer
513k+ views
Hint: To write the expanded form of the given expression, we have to use the algebraic identity ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac$ . We have to compare the terms of the given expression and this identity, substitute the values and simplify.
Complete step by step answer:
We have to write the expanded form of ${{\left( a+2b+c \right)}^{2}}$ . We know that ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac$
Let us compare the given expression with the above formula. We have to substitute for b as 2b in the identity for ${{\left( a+b+c \right)}^{2}}$ .
$\Rightarrow {{\left( a+2b+c \right)}^{2}}={{a}^{2}}+{{\left( 2b \right)}^{2}}+{{c}^{2}}+2a\times 2b+2\times 2b\times c+2ac$
Let us simplify the above expression.
$\Rightarrow {{\left( a+2b+c \right)}^{2}}={{a}^{2}}+4{{b}^{2}}+{{c}^{2}}+4ab+4bc+2ac$
Hence, the expanded form of ${{\left( a+2b+c \right)}^{2}}$ is ${{a}^{2}}+4{{b}^{2}}+{{c}^{2}}+4ab+4bc+2ac$ .
Note: Students must be thorough with algebraic identities. They have a chance of making mistake by writing the identity as ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+4ab+4bc+4ac$ . The main identities used in algebra are that of ${{\left( a+b \right)}^{2}},{{\left( a-b \right)}^{2}},\left( {{a}^{2}}-{{b}^{2}} \right),{{\left( a+b+c \right)}^{2}},{{\left( a-b-c \right)}^{2}}$ . They can also use the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ to find the value of the given expression.
Let us group the given expression as ${{\left( \left( a+2b \right)+c \right)}^{2}}$ . Now, we have to substitute $a=a+2b$ and $b=c$ in the identity for ${{\left( a+b \right)}^{2}}$ .
$\Rightarrow {{\left( \left( a+2b \right)+c \right)}^{2}}={{\left( a+2b \right)}^{2}}+2\left( a+2b \right)c+{{c}^{2}}$
Again, we have to apply the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ on the first term.
$\Rightarrow {{\left( \left( a+2b \right)+c \right)}^{2}}={{a}^{2}}+2a\times 2b+{{\left( 2b \right)}^{2}}+2\left( a+2b \right)c+{{c}^{2}}$
Let us simplify the above expression using distributive property.
\[\begin{align}
& \Rightarrow {{\left( \left( a+2b \right)+c \right)}^{2}}={{a}^{2}}+4ab+4{{b}^{2}}+2ac+4bc+{{c}^{2}} \\
& \Rightarrow {{\left( \left( a+2b \right)+c \right)}^{2}}={{a}^{2}}+4{{b}^{2}}+{{c}^{2}}+4ab+4bc+2ac \\
\end{align}\]
We can also combine the terms ${{\left( a+\left( 2b+c \right) \right)}^{2}}$ and substitute $b=2b+c$ in the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ .
$\Rightarrow {{\left( a+\left( 2b+c \right) \right)}^{2}}={{a}^{2}}+2a\times \left( 2b+c \right)+{{\left( 2b+c \right)}^{2}}$
Now, let us apply the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ again on the third term of the above expression.
$\Rightarrow {{\left( a+\left( 2b+c \right) \right)}^{2}}={{a}^{2}}+2a\times \left( 2b+c \right)+{{\left( 2b \right)}^{2}}+2\times 2b\times c+{{c}^{2}}$
Let us simplify the above expression using distributive property.
\[\begin{align}
& \Rightarrow {{\left( a+\left( 2b+c \right) \right)}^{2}}={{a}^{2}}+4ab+2ac+4{{b}^{2}}+4bc+{{c}^{2}} \\
& \Rightarrow {{\left( a+\left( 2b+c \right) \right)}^{2}}={{a}^{2}}+4{{b}^{2}}+{{c}^{2}}+4ab+4bc+2ac \\
\end{align}\]
We can see that these methods are somewhat lengthy. Therefore, students must learn the formulas to save time.
Complete step by step answer:
We have to write the expanded form of ${{\left( a+2b+c \right)}^{2}}$ . We know that ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac$
Let us compare the given expression with the above formula. We have to substitute for b as 2b in the identity for ${{\left( a+b+c \right)}^{2}}$ .
$\Rightarrow {{\left( a+2b+c \right)}^{2}}={{a}^{2}}+{{\left( 2b \right)}^{2}}+{{c}^{2}}+2a\times 2b+2\times 2b\times c+2ac$
Let us simplify the above expression.
$\Rightarrow {{\left( a+2b+c \right)}^{2}}={{a}^{2}}+4{{b}^{2}}+{{c}^{2}}+4ab+4bc+2ac$
Hence, the expanded form of ${{\left( a+2b+c \right)}^{2}}$ is ${{a}^{2}}+4{{b}^{2}}+{{c}^{2}}+4ab+4bc+2ac$ .
Note: Students must be thorough with algebraic identities. They have a chance of making mistake by writing the identity as ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+4ab+4bc+4ac$ . The main identities used in algebra are that of ${{\left( a+b \right)}^{2}},{{\left( a-b \right)}^{2}},\left( {{a}^{2}}-{{b}^{2}} \right),{{\left( a+b+c \right)}^{2}},{{\left( a-b-c \right)}^{2}}$ . They can also use the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ to find the value of the given expression.
Let us group the given expression as ${{\left( \left( a+2b \right)+c \right)}^{2}}$ . Now, we have to substitute $a=a+2b$ and $b=c$ in the identity for ${{\left( a+b \right)}^{2}}$ .
$\Rightarrow {{\left( \left( a+2b \right)+c \right)}^{2}}={{\left( a+2b \right)}^{2}}+2\left( a+2b \right)c+{{c}^{2}}$
Again, we have to apply the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ on the first term.
$\Rightarrow {{\left( \left( a+2b \right)+c \right)}^{2}}={{a}^{2}}+2a\times 2b+{{\left( 2b \right)}^{2}}+2\left( a+2b \right)c+{{c}^{2}}$
Let us simplify the above expression using distributive property.
\[\begin{align}
& \Rightarrow {{\left( \left( a+2b \right)+c \right)}^{2}}={{a}^{2}}+4ab+4{{b}^{2}}+2ac+4bc+{{c}^{2}} \\
& \Rightarrow {{\left( \left( a+2b \right)+c \right)}^{2}}={{a}^{2}}+4{{b}^{2}}+{{c}^{2}}+4ab+4bc+2ac \\
\end{align}\]
We can also combine the terms ${{\left( a+\left( 2b+c \right) \right)}^{2}}$ and substitute $b=2b+c$ in the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ .
$\Rightarrow {{\left( a+\left( 2b+c \right) \right)}^{2}}={{a}^{2}}+2a\times \left( 2b+c \right)+{{\left( 2b+c \right)}^{2}}$
Now, let us apply the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ again on the third term of the above expression.
$\Rightarrow {{\left( a+\left( 2b+c \right) \right)}^{2}}={{a}^{2}}+2a\times \left( 2b+c \right)+{{\left( 2b \right)}^{2}}+2\times 2b\times c+{{c}^{2}}$
Let us simplify the above expression using distributive property.
\[\begin{align}
& \Rightarrow {{\left( a+\left( 2b+c \right) \right)}^{2}}={{a}^{2}}+4ab+2ac+4{{b}^{2}}+4bc+{{c}^{2}} \\
& \Rightarrow {{\left( a+\left( 2b+c \right) \right)}^{2}}={{a}^{2}}+4{{b}^{2}}+{{c}^{2}}+4ab+4bc+2ac \\
\end{align}\]
We can see that these methods are somewhat lengthy. Therefore, students must learn the formulas to save time.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

