
How do you write the equation for a circle with points $\left( {0,2a} \right),\left( {2b,0} \right)$ as ends of a diameter?
Answer
544.5k+ views
Hint: Centre is the midpoint of diameter and distance from centre to either of the endpoints of diameter is radius. Thereafter, we will use the midpoint formula in the given values. Further, we will use distance formula to find the equation of the circle given below:
$x = \dfrac{x_1 + x_2}{2},y = \dfrac{y _1 + y_2}{2}$ (midpoint formula)
${\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}$ (Centre radius form of circle)
$ \Rightarrow r = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ (Distance formula)
Complete step by step answer:
Given diametric ends of the circle are $\left( {0,2a} \right),\left( {2b,0} \right)$.
Using the midpoint formula, we calculate the coordinate of the centre first.
$x = \dfrac{x_1 + x_2}{2},y = \dfrac{y _1 + y_2}{2}$ --(1)
Where ${x_1} = 0,{y_1} = 2a,{x_2} = 2b,{y_2} = 0$
Using these values in formula (1) we have
$x = \dfrac{{0 + 2b}}{2},y = \dfrac{{2a + 0}}{2}$
$ \Rightarrow x = b,y = a$
Thus, the coordinate of the centre is $\left( {b,a} \right)$.
We apply distance formula between centre of the circle and either end of diameter to calculate its radius:
$D = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Here, ${x_1} = 0,{y_1} = 2a,{x_2} = b,{y_2} = a$
Using in above formula we have
$ \Rightarrow D = \sqrt {{{\left( {b - 0} \right)}^2} + {{\left( {a - 2a} \right)}^2}} $
$ \Rightarrow D = \sqrt {{a^2} + {b^2}} $
Therefore, the radius of the circle is $\sqrt {{a^2} + {b^2}} $.
Now, we use the centre radius formula to find the equation of the circle.
${\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}$
Where $\left( {{x_1},{y_1}} \right)$ is the coordinate of the centre and $r$ be the radius of the circle.
Using value of $\left( {{x_1},{y_1}} \right) = \left( {b,a} \right)$ and $r = \sqrt {{a^2} + {b^2}} $ in above formula.
$ \Rightarrow {\left( {x - b} \right)^2} + {\left( {y - a} \right)^2} = {a^2} + {b^2}$
Using algebraic identity${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
$ \Rightarrow {x^2} - 2xb + {b^2} + {y^2} - 2ay + {a^2} = {a^2} + {b^2}$
$ \Rightarrow {x^2} + {y^2} - 2bx - 2ay = 0$
Hence, the required equation of the circle is ${x^2} + {y^2} - 2bx - 2ay = 0$.
Note: We can also use formula $\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) + \left( {y - {y_1}} \right)\left( {y - {y_2}} \right) = 0$ to find equation of circle.
Here, $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ are diametric ends.
$x = \dfrac{x_1 + x_2}{2},y = \dfrac{y _1 + y_2}{2}$ (midpoint formula)
${\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}$ (Centre radius form of circle)
$ \Rightarrow r = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ (Distance formula)
Complete step by step answer:
Given diametric ends of the circle are $\left( {0,2a} \right),\left( {2b,0} \right)$.
Using the midpoint formula, we calculate the coordinate of the centre first.
$x = \dfrac{x_1 + x_2}{2},y = \dfrac{y _1 + y_2}{2}$ --(1)
Where ${x_1} = 0,{y_1} = 2a,{x_2} = 2b,{y_2} = 0$
Using these values in formula (1) we have
$x = \dfrac{{0 + 2b}}{2},y = \dfrac{{2a + 0}}{2}$
$ \Rightarrow x = b,y = a$
Thus, the coordinate of the centre is $\left( {b,a} \right)$.
We apply distance formula between centre of the circle and either end of diameter to calculate its radius:
$D = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Here, ${x_1} = 0,{y_1} = 2a,{x_2} = b,{y_2} = a$
Using in above formula we have
$ \Rightarrow D = \sqrt {{{\left( {b - 0} \right)}^2} + {{\left( {a - 2a} \right)}^2}} $
$ \Rightarrow D = \sqrt {{a^2} + {b^2}} $
Therefore, the radius of the circle is $\sqrt {{a^2} + {b^2}} $.
Now, we use the centre radius formula to find the equation of the circle.
${\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}$
Where $\left( {{x_1},{y_1}} \right)$ is the coordinate of the centre and $r$ be the radius of the circle.
Using value of $\left( {{x_1},{y_1}} \right) = \left( {b,a} \right)$ and $r = \sqrt {{a^2} + {b^2}} $ in above formula.
$ \Rightarrow {\left( {x - b} \right)^2} + {\left( {y - a} \right)^2} = {a^2} + {b^2}$
Using algebraic identity${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
$ \Rightarrow {x^2} - 2xb + {b^2} + {y^2} - 2ay + {a^2} = {a^2} + {b^2}$
$ \Rightarrow {x^2} + {y^2} - 2bx - 2ay = 0$
Hence, the required equation of the circle is ${x^2} + {y^2} - 2bx - 2ay = 0$.
Note: We can also use formula $\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) + \left( {y - {y_1}} \right)\left( {y - {y_2}} \right) = 0$ to find equation of circle.
Here, $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ are diametric ends.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

