
Write the electronic structure of Acetylene.
Answer
572.4k+ views
Hint: The bonding in the compound takes place in an order to complete it octet with respect to the atoms involved by the sharing of electrons between them. This further determines the number and type of bonds formed in the structure to attain a stable geometry.
Complete step by step answer:
The electronic structure of the given compound can be obtained by using its electronic configuration. As we know the molecular formula of acetylene is ${{C}_{2}}{{H}_{2}}$, consisting of two bonded carbon atoms, which are further bonded to a hydrogen atom. The electronic configuration of the carbon atom is $1{{s}^{2}}2{{s}^{2}}2{{p}^{2}}$. In its excited state, one electron from 2s orbitals jumps to the 2p orbital. In order to form a bond with the adjacent carbon and the hydrogen, it undergoes hybridisation to form two sp-hybridised orbitals. Thus, forming two sigma bonds along the internuclear axis in the structure. The two p-orbitals (${{p}_{x}},{{p}_{y}}$) which are perpendicular to the internuclear axis, undergo sideways overlapping with the p-orbitals of the adjacent carbon atom to form two pi-bonds. Thus, we have a triple bond formed between the two carbon atoms. Also, the octet is complete for all the atoms present in the structure.
The acetylene formed is an unsaturated hydrocarbon. It is the simplest alkyne compound, with its IUPAC name as ethyne. From its sp- hybridisation and bonding, all the four atoms are in a straight line. Thus, having a linear geometry.
Note: The electronic configuration through which the hybridisation can be determined with respect to the number of bonds formed. The structure can thus be obtained.
Complete step by step answer:
The electronic structure of the given compound can be obtained by using its electronic configuration. As we know the molecular formula of acetylene is ${{C}_{2}}{{H}_{2}}$, consisting of two bonded carbon atoms, which are further bonded to a hydrogen atom. The electronic configuration of the carbon atom is $1{{s}^{2}}2{{s}^{2}}2{{p}^{2}}$. In its excited state, one electron from 2s orbitals jumps to the 2p orbital. In order to form a bond with the adjacent carbon and the hydrogen, it undergoes hybridisation to form two sp-hybridised orbitals. Thus, forming two sigma bonds along the internuclear axis in the structure. The two p-orbitals (${{p}_{x}},{{p}_{y}}$) which are perpendicular to the internuclear axis, undergo sideways overlapping with the p-orbitals of the adjacent carbon atom to form two pi-bonds. Thus, we have a triple bond formed between the two carbon atoms. Also, the octet is complete for all the atoms present in the structure.
The acetylene formed is an unsaturated hydrocarbon. It is the simplest alkyne compound, with its IUPAC name as ethyne. From its sp- hybridisation and bonding, all the four atoms are in a straight line. Thus, having a linear geometry.
Note: The electronic configuration through which the hybridisation can be determined with respect to the number of bonds formed. The structure can thus be obtained.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

