
How do you write the complex number $ - 2i$ in polar form?
Answer
538.8k+ views
Hint: We are given a complex number and we have to write it in the polar form. For that, we must know the process of converting a complex number into polar form. Complex numbers are of the form $a \pm ib$ , where $a$ is the real part and $ib$ is the imaginary part of the complex number. $r\cos \theta + ir\sin \theta $ is the polar form of the complex number $a + ib$ where $r = \sqrt {{a^2} + {b^2}} $ , $\cos \theta = \dfrac{a}{r}$ and $\sin \theta = \dfrac{b}{r}$ . Using these formulas, we can convert the complex number into polar form.
Complete step-by-step solution:
The complex number given to us is $ - 2i$ , comparing it to the standard form of the complex number $a + ib$ , we get –
$a = 0$ and $b = - 2$
We know that the polar form of $a + ib$ is $r\cos \theta + if\sin \theta $ -
$
\Rightarrow r = \sqrt {0 + 4} = 2 \\
\Rightarrow \cos \theta = \dfrac{0}{2} = 0 \\
\Rightarrow \sin \theta = \dfrac{{ - 2}}{2} = - 1 \\
$
We know that
$
\Rightarrow \cos \dfrac{{3\pi }}{2} = 0 \\
\Rightarrow \cos \theta = \cos \dfrac{{3\pi }}{2} \\
$
And
$
\Rightarrow \sin \dfrac{{3\pi }}{2} = - 1 \\
\Rightarrow \sin \theta = \sin \dfrac{{3\pi }}{2} \\
$
Hence, the polar form of $ - 2i$ is $2(\cos \dfrac{{3\pi }}{2} + i\sin \dfrac{{3\pi }}{2})$ .
Note: The complex numbers and real numbers are the two types of numbers. A number that can be shown on the number line is known as a real number, and the numbers that cannot be shown on the number line is known as a complex number. We cannot find the square root of negative numbers, so we have supposed $\sqrt { - 1} $ to be iota $(i)$ , this way $\sqrt { - n} $ is written as $\sqrt n i$ . The complex number $a + ib$ is written as $(r,\theta )$. Thus the polar form of $ - 2i$ is written as $(2,\dfrac{{3\pi }}{2})$ . Converting complex numbers into a polar form is used for their expression on the graph paper, so, with a similar approach, we can convert any complex number into polar form.
Complete step-by-step solution:
The complex number given to us is $ - 2i$ , comparing it to the standard form of the complex number $a + ib$ , we get –
$a = 0$ and $b = - 2$
We know that the polar form of $a + ib$ is $r\cos \theta + if\sin \theta $ -
$
\Rightarrow r = \sqrt {0 + 4} = 2 \\
\Rightarrow \cos \theta = \dfrac{0}{2} = 0 \\
\Rightarrow \sin \theta = \dfrac{{ - 2}}{2} = - 1 \\
$
We know that
$
\Rightarrow \cos \dfrac{{3\pi }}{2} = 0 \\
\Rightarrow \cos \theta = \cos \dfrac{{3\pi }}{2} \\
$
And
$
\Rightarrow \sin \dfrac{{3\pi }}{2} = - 1 \\
\Rightarrow \sin \theta = \sin \dfrac{{3\pi }}{2} \\
$
Hence, the polar form of $ - 2i$ is $2(\cos \dfrac{{3\pi }}{2} + i\sin \dfrac{{3\pi }}{2})$ .
Note: The complex numbers and real numbers are the two types of numbers. A number that can be shown on the number line is known as a real number, and the numbers that cannot be shown on the number line is known as a complex number. We cannot find the square root of negative numbers, so we have supposed $\sqrt { - 1} $ to be iota $(i)$ , this way $\sqrt { - n} $ is written as $\sqrt n i$ . The complex number $a + ib$ is written as $(r,\theta )$. Thus the polar form of $ - 2i$ is written as $(2,\dfrac{{3\pi }}{2})$ . Converting complex numbers into a polar form is used for their expression on the graph paper, so, with a similar approach, we can convert any complex number into polar form.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

