
Write the complex conjugate of 3 + 4i.
Answer
574.5k+ views
Hint: To solve this question, first of all, we will define what are complex numbers and what are its conjugates with their implications on the graph of the complex number and its conjugate in the complex plane. Then, with the concepts we have learned, we will find the conjugate of 3 + 4i.
Complete step-by-step answer:
A complex number is just addition of two parts, one real and imaginary, in the form a + ib. where, $ {{i}^{2}} $ = ─1. Since, this value of i doesn’t exist for any real number, mathematicians have defined complex numbers. The complex number a + ib has an imaginary part as well as a real part. a in the complex number a + ib is real whereas b in the complex number is an imaginary part. Either of a or b can be 0.
The conjugate of a complex number is also a complex number with the magnitudes of the real part and imaginary part as equal but the sign of the imaginary part is opposite.
Thus, the conjugate of a + ib will be a – ib.
Complex numbers can be plotted in the complex plane, with the horizontal axis as real part and vertical axis as imaginary part.
Thus, when we plot the complex number and its conjugate in the complex plane, they will be a mirror image about the real axis.
Thus, the conjugate of 3 + 4i is 3 – 4i.
Note: It is to be noted that every real number is a complex number with the imaginary part as 0, but the converse of this is not true, i.e. not all complex numbers are real numbers. We can write conjugates of a complex number just by changing the sign of the imaginary part.
Complete step-by-step answer:
A complex number is just addition of two parts, one real and imaginary, in the form a + ib. where, $ {{i}^{2}} $ = ─1. Since, this value of i doesn’t exist for any real number, mathematicians have defined complex numbers. The complex number a + ib has an imaginary part as well as a real part. a in the complex number a + ib is real whereas b in the complex number is an imaginary part. Either of a or b can be 0.
The conjugate of a complex number is also a complex number with the magnitudes of the real part and imaginary part as equal but the sign of the imaginary part is opposite.
Thus, the conjugate of a + ib will be a – ib.
Complex numbers can be plotted in the complex plane, with the horizontal axis as real part and vertical axis as imaginary part.
Thus, when we plot the complex number and its conjugate in the complex plane, they will be a mirror image about the real axis.
Thus, the conjugate of 3 + 4i is 3 – 4i.
Note: It is to be noted that every real number is a complex number with the imaginary part as 0, but the converse of this is not true, i.e. not all complex numbers are real numbers. We can write conjugates of a complex number just by changing the sign of the imaginary part.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

