Answer

Verified

484.5k+ views

Hint: Let us prove the associative law of addition of vectors by using a parallelogram with its sides as different vectors.

Complete step-by-step answer:

Now as we know that the associative law of addition of vectors states that the sum of the vectors remains same irrespective of their order or grouping in which they are arranged.

Like if \[\overrightarrow {\text{X}} \], \[\overrightarrow {\text{Y}} \] and \[\overrightarrow {\text{Z}} \] are the three vectors then according to associative law of addition of vectors \[\left( {\overrightarrow {\text{X}} {\text{ + }}\overrightarrow {\text{Y}} } \right){\text{ + }}\overrightarrow {\text{Z}} {\text{ = }}\overrightarrow {\text{X}} {\text{ + }}\left( {\overrightarrow {\text{Y}} {\text{ + }}\overrightarrow {\text{Z}} } \right)\]

As we know that according to head to tail rule if the head of one vector joins with the tail of another vector then the sum of both vectors will be the vector formed by the joining tail of one vector with the head of another.

So, now let \[\overrightarrow {\text{A}} \], \[\overrightarrow {\text{B}} \] and \[\overrightarrow {\text{C}} \] are the three vectors then applying head to tail rule to obtain the resultant of \[\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} \] and \[\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} \]

So, \[\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} \] = \[\overrightarrow {{\text{OQ}}} \]

And, \[\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} \] = \[\overrightarrow {{\text{PR}}} \]

Then finally again find the resultant of these three vectors,

So, \[\overrightarrow {{\text{OR}}} {\text{ = }}\overrightarrow {{\text{OP}}} {\text{ + }}\overrightarrow {{\text{PR}}} \]

Applying head to tail rule,

\[\overrightarrow {\text{R}} {\text{ = }}\overrightarrow {\text{A}} {\text{ + }}\left( {\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} } \right)\] (1)

And, \[\overrightarrow {{\text{OR}}} {\text{ = }}\overrightarrow {{\text{OQ}}} {\text{ + }}\overrightarrow {{\text{QR}}} \]

Applying head to tail rule,

\[\overrightarrow {\text{R}} {\text{ = }}\left( {\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} } \right){\text{ + }}\overrightarrow {\text{C}} {\text{ }}\] (2)

Thus, using equation 1 and 2. We can say that,

\[\left( {\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} } \right){\text{ + }}\overrightarrow {\text{C}} {\text{ = }}\overrightarrow {\text{A}} {\text{ + }}\left( {\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} } \right)\]

Hence, this fact is known as Associative law of vector addition.

Note: Whenever we come up with this type of problem then first, we assume that the three vectors as the sides of a parallelogram and then apply head to tail rule to find the sum of the vectors and this will prove the required result. And this will be the easiest and efficient way to prove the result.

Complete step-by-step answer:

Now as we know that the associative law of addition of vectors states that the sum of the vectors remains same irrespective of their order or grouping in which they are arranged.

Like if \[\overrightarrow {\text{X}} \], \[\overrightarrow {\text{Y}} \] and \[\overrightarrow {\text{Z}} \] are the three vectors then according to associative law of addition of vectors \[\left( {\overrightarrow {\text{X}} {\text{ + }}\overrightarrow {\text{Y}} } \right){\text{ + }}\overrightarrow {\text{Z}} {\text{ = }}\overrightarrow {\text{X}} {\text{ + }}\left( {\overrightarrow {\text{Y}} {\text{ + }}\overrightarrow {\text{Z}} } \right)\]

As we know that according to head to tail rule if the head of one vector joins with the tail of another vector then the sum of both vectors will be the vector formed by the joining tail of one vector with the head of another.

So, now let \[\overrightarrow {\text{A}} \], \[\overrightarrow {\text{B}} \] and \[\overrightarrow {\text{C}} \] are the three vectors then applying head to tail rule to obtain the resultant of \[\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} \] and \[\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} \]

So, \[\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} \] = \[\overrightarrow {{\text{OQ}}} \]

And, \[\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} \] = \[\overrightarrow {{\text{PR}}} \]

Then finally again find the resultant of these three vectors,

So, \[\overrightarrow {{\text{OR}}} {\text{ = }}\overrightarrow {{\text{OP}}} {\text{ + }}\overrightarrow {{\text{PR}}} \]

Applying head to tail rule,

\[\overrightarrow {\text{R}} {\text{ = }}\overrightarrow {\text{A}} {\text{ + }}\left( {\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} } \right)\] (1)

And, \[\overrightarrow {{\text{OR}}} {\text{ = }}\overrightarrow {{\text{OQ}}} {\text{ + }}\overrightarrow {{\text{QR}}} \]

Applying head to tail rule,

\[\overrightarrow {\text{R}} {\text{ = }}\left( {\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} } \right){\text{ + }}\overrightarrow {\text{C}} {\text{ }}\] (2)

Thus, using equation 1 and 2. We can say that,

\[\left( {\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} } \right){\text{ + }}\overrightarrow {\text{C}} {\text{ = }}\overrightarrow {\text{A}} {\text{ + }}\left( {\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} } \right)\]

Hence, this fact is known as Associative law of vector addition.

Note: Whenever we come up with this type of problem then first, we assume that the three vectors as the sides of a parallelogram and then apply head to tail rule to find the sum of the vectors and this will prove the required result. And this will be the easiest and efficient way to prove the result.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which places in India experience sunrise first and class 9 social science CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE