# Write the associative law of addition of vectors.

Answer

Verified

382.5k+ views

Hint: Let us prove the associative law of addition of vectors by using a parallelogram with its sides as different vectors.

Complete step-by-step answer:

Now as we know that the associative law of addition of vectors states that the sum of the vectors remains same irrespective of their order or grouping in which they are arranged.

Like if \[\overrightarrow {\text{X}} \], \[\overrightarrow {\text{Y}} \] and \[\overrightarrow {\text{Z}} \] are the three vectors then according to associative law of addition of vectors \[\left( {\overrightarrow {\text{X}} {\text{ + }}\overrightarrow {\text{Y}} } \right){\text{ + }}\overrightarrow {\text{Z}} {\text{ = }}\overrightarrow {\text{X}} {\text{ + }}\left( {\overrightarrow {\text{Y}} {\text{ + }}\overrightarrow {\text{Z}} } \right)\]

As we know that according to head to tail rule if the head of one vector joins with the tail of another vector then the sum of both vectors will be the vector formed by the joining tail of one vector with the head of another.

So, now let \[\overrightarrow {\text{A}} \], \[\overrightarrow {\text{B}} \] and \[\overrightarrow {\text{C}} \] are the three vectors then applying head to tail rule to obtain the resultant of \[\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} \] and \[\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} \]

So, \[\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} \] = \[\overrightarrow {{\text{OQ}}} \]

And, \[\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} \] = \[\overrightarrow {{\text{PR}}} \]

Then finally again find the resultant of these three vectors,

So, \[\overrightarrow {{\text{OR}}} {\text{ = }}\overrightarrow {{\text{OP}}} {\text{ + }}\overrightarrow {{\text{PR}}} \]

Applying head to tail rule,

\[\overrightarrow {\text{R}} {\text{ = }}\overrightarrow {\text{A}} {\text{ + }}\left( {\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} } \right)\] (1)

And, \[\overrightarrow {{\text{OR}}} {\text{ = }}\overrightarrow {{\text{OQ}}} {\text{ + }}\overrightarrow {{\text{QR}}} \]

Applying head to tail rule,

\[\overrightarrow {\text{R}} {\text{ = }}\left( {\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} } \right){\text{ + }}\overrightarrow {\text{C}} {\text{ }}\] (2)

Thus, using equation 1 and 2. We can say that,

\[\left( {\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} } \right){\text{ + }}\overrightarrow {\text{C}} {\text{ = }}\overrightarrow {\text{A}} {\text{ + }}\left( {\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} } \right)\]

Hence, this fact is known as Associative law of vector addition.

Note: Whenever we come up with this type of problem then first, we assume that the three vectors as the sides of a parallelogram and then apply head to tail rule to find the sum of the vectors and this will prove the required result. And this will be the easiest and efficient way to prove the result.

Complete step-by-step answer:

Now as we know that the associative law of addition of vectors states that the sum of the vectors remains same irrespective of their order or grouping in which they are arranged.

Like if \[\overrightarrow {\text{X}} \], \[\overrightarrow {\text{Y}} \] and \[\overrightarrow {\text{Z}} \] are the three vectors then according to associative law of addition of vectors \[\left( {\overrightarrow {\text{X}} {\text{ + }}\overrightarrow {\text{Y}} } \right){\text{ + }}\overrightarrow {\text{Z}} {\text{ = }}\overrightarrow {\text{X}} {\text{ + }}\left( {\overrightarrow {\text{Y}} {\text{ + }}\overrightarrow {\text{Z}} } \right)\]

As we know that according to head to tail rule if the head of one vector joins with the tail of another vector then the sum of both vectors will be the vector formed by the joining tail of one vector with the head of another.

So, now let \[\overrightarrow {\text{A}} \], \[\overrightarrow {\text{B}} \] and \[\overrightarrow {\text{C}} \] are the three vectors then applying head to tail rule to obtain the resultant of \[\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} \] and \[\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} \]

So, \[\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} \] = \[\overrightarrow {{\text{OQ}}} \]

And, \[\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} \] = \[\overrightarrow {{\text{PR}}} \]

Then finally again find the resultant of these three vectors,

So, \[\overrightarrow {{\text{OR}}} {\text{ = }}\overrightarrow {{\text{OP}}} {\text{ + }}\overrightarrow {{\text{PR}}} \]

Applying head to tail rule,

\[\overrightarrow {\text{R}} {\text{ = }}\overrightarrow {\text{A}} {\text{ + }}\left( {\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} } \right)\] (1)

And, \[\overrightarrow {{\text{OR}}} {\text{ = }}\overrightarrow {{\text{OQ}}} {\text{ + }}\overrightarrow {{\text{QR}}} \]

Applying head to tail rule,

\[\overrightarrow {\text{R}} {\text{ = }}\left( {\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} } \right){\text{ + }}\overrightarrow {\text{C}} {\text{ }}\] (2)

Thus, using equation 1 and 2. We can say that,

\[\left( {\overrightarrow {\text{A}} {\text{ + }}\overrightarrow {\text{B}} } \right){\text{ + }}\overrightarrow {\text{C}} {\text{ = }}\overrightarrow {\text{A}} {\text{ + }}\left( {\overrightarrow {\text{B}} {\text{ + }}\overrightarrow {\text{C}} } \right)\]

Hence, this fact is known as Associative law of vector addition.

Note: Whenever we come up with this type of problem then first, we assume that the three vectors as the sides of a parallelogram and then apply head to tail rule to find the sum of the vectors and this will prove the required result. And this will be the easiest and efficient way to prove the result.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE