
Write the antiderivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\].
Answer
513.3k+ views
Hint: We know that the anti-derivative of a function f(x) is defined as the integral of the function f(x). So, it is clear that the anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\] is equal to the integral of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]. Let us assume f(x) is equal to \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]. Now we should find the integral of f(x). We know that \[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\]. By using this concept, we can find the antiderivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\].
Complete step by step answer:
Before solving the problem, we should know that the anti-derivative of a function f(x) is defined as the integral of the function f(x).
So, it is clear that the anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\] is equal to the integral of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\].
Let us assume
\[f(x)=\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)....(1)\]
So, now we should find the integral of f(x).
\[\begin{align}
& \Rightarrow \int{f(x)dx}=\int{\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)dx} \\
& \Rightarrow \int{f(x)dx}=\int{3\sqrt{x}dx+\int{\dfrac{1}{\sqrt{x}}dx}}....(2) \\
\end{align}\]
Let us assume A is equal to \[\int{3\sqrt{x}dx}\].
\[\Rightarrow A=\int{3\sqrt{x}dx}....(3)\]
Let us assume B is equal to \[\int{\dfrac{1}{\sqrt{x}}dx}\].
\[\Rightarrow B=\int{\dfrac{1}{\sqrt{x}}dx}.......(4)\]
Now let us substitute equation (3) and equation (4) in equation (2).
\[\Rightarrow \int{f(x)dx}=A+B.....(5)\]
We know that \[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\]. By using this formula, we should find the value of A.
\[\begin{align}
& \Rightarrow A=\int{3\sqrt{x}dx} \\
& \Rightarrow A=3\int{\sqrt{x}dx} \\
& \Rightarrow A=3\int{{{x}^{\dfrac{1}{2}}}dx} \\
& \Rightarrow A=3\left( \dfrac{{{x}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1} \right) \\
& \Rightarrow A=3\left( \dfrac{{{x}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right) \\
& \Rightarrow A=3\left( \dfrac{2}{3} \right){{x}^{\dfrac{3}{2}}} \\
& \Rightarrow A=2{{x}^{\dfrac{3}{2}}}.....(6) \\
\end{align}\]
We should also find the value of B.
\[\begin{align}
& \Rightarrow B=\int{\dfrac{1}{\sqrt{x}}dx} \\
& \Rightarrow B=\int{{{x}^{\dfrac{-1}{2}}}dx} \\
& \Rightarrow B=\dfrac{{{x}^{\dfrac{-1}{2}+1}}}{\dfrac{-1}{2}+1} \\
& \Rightarrow B=\dfrac{{{x}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \\
& \Rightarrow B=2{{x}^{\dfrac{1}{2}}}.......(7) \\
\end{align}\]
Now let us substitute equation (6) and equation (7) in equation (5), then we get
\[\begin{align}
& \Rightarrow \int{f(x)dx}=2{{x}^{\dfrac{3}{2}}}+2{{x}^{\dfrac{1}{2}}} \\
& \Rightarrow \int{f(x)dx}=2{{x}^{\dfrac{1}{2}}}\left( x+1 \right).....(8) \\
\end{align}\]
From equation (8), it is clear that the value of anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\] is equal to \[2{{x}^{\dfrac{1}{2}}}\left( x+1 \right)\].
Note:
Some students may have a misconception that the anti-derivative of a function f(x) is equal to \[\dfrac{d}{dx}f(x)\]. If this misconception is followed, then we cannot get the correct value of anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]. So, it is clear that this misconception should be avoided by students. This misconception will lead to the wrong solution.
Complete step by step answer:
Before solving the problem, we should know that the anti-derivative of a function f(x) is defined as the integral of the function f(x).
So, it is clear that the anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\] is equal to the integral of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\].
Let us assume
\[f(x)=\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)....(1)\]
So, now we should find the integral of f(x).
\[\begin{align}
& \Rightarrow \int{f(x)dx}=\int{\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)dx} \\
& \Rightarrow \int{f(x)dx}=\int{3\sqrt{x}dx+\int{\dfrac{1}{\sqrt{x}}dx}}....(2) \\
\end{align}\]
Let us assume A is equal to \[\int{3\sqrt{x}dx}\].
\[\Rightarrow A=\int{3\sqrt{x}dx}....(3)\]
Let us assume B is equal to \[\int{\dfrac{1}{\sqrt{x}}dx}\].
\[\Rightarrow B=\int{\dfrac{1}{\sqrt{x}}dx}.......(4)\]
Now let us substitute equation (3) and equation (4) in equation (2).
\[\Rightarrow \int{f(x)dx}=A+B.....(5)\]
We know that \[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\]. By using this formula, we should find the value of A.
\[\begin{align}
& \Rightarrow A=\int{3\sqrt{x}dx} \\
& \Rightarrow A=3\int{\sqrt{x}dx} \\
& \Rightarrow A=3\int{{{x}^{\dfrac{1}{2}}}dx} \\
& \Rightarrow A=3\left( \dfrac{{{x}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1} \right) \\
& \Rightarrow A=3\left( \dfrac{{{x}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right) \\
& \Rightarrow A=3\left( \dfrac{2}{3} \right){{x}^{\dfrac{3}{2}}} \\
& \Rightarrow A=2{{x}^{\dfrac{3}{2}}}.....(6) \\
\end{align}\]
We should also find the value of B.
\[\begin{align}
& \Rightarrow B=\int{\dfrac{1}{\sqrt{x}}dx} \\
& \Rightarrow B=\int{{{x}^{\dfrac{-1}{2}}}dx} \\
& \Rightarrow B=\dfrac{{{x}^{\dfrac{-1}{2}+1}}}{\dfrac{-1}{2}+1} \\
& \Rightarrow B=\dfrac{{{x}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \\
& \Rightarrow B=2{{x}^{\dfrac{1}{2}}}.......(7) \\
\end{align}\]
Now let us substitute equation (6) and equation (7) in equation (5), then we get
\[\begin{align}
& \Rightarrow \int{f(x)dx}=2{{x}^{\dfrac{3}{2}}}+2{{x}^{\dfrac{1}{2}}} \\
& \Rightarrow \int{f(x)dx}=2{{x}^{\dfrac{1}{2}}}\left( x+1 \right).....(8) \\
\end{align}\]
From equation (8), it is clear that the value of anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\] is equal to \[2{{x}^{\dfrac{1}{2}}}\left( x+1 \right)\].
Note:
Some students may have a misconception that the anti-derivative of a function f(x) is equal to \[\dfrac{d}{dx}f(x)\]. If this misconception is followed, then we cannot get the correct value of anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]. So, it is clear that this misconception should be avoided by students. This misconception will lead to the wrong solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Why should a magnesium ribbon be cleaned before burning class 12 chemistry CBSE

A renewable exhaustible natural resources is A Coal class 12 biology CBSE

Megasporangium is equivalent to a Embryo sac b Fruit class 12 biology CBSE

What is Zeises salt and ferrocene Explain with str class 12 chemistry CBSE

How to calculate power in series and parallel circ class 12 physics CBSE

Anal style is present in A Male cockroach B Female class 12 biology CBSE
