
Write the antiderivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\].
Answer
591.3k+ views
Hint: We know that the anti-derivative of a function f(x) is defined as the integral of the function f(x). So, it is clear that the anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\] is equal to the integral of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]. Let us assume f(x) is equal to \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]. Now we should find the integral of f(x). We know that \[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\]. By using this concept, we can find the antiderivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\].
Complete step by step answer:
Before solving the problem, we should know that the anti-derivative of a function f(x) is defined as the integral of the function f(x).
So, it is clear that the anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\] is equal to the integral of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\].
Let us assume
\[f(x)=\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)....(1)\]
So, now we should find the integral of f(x).
\[\begin{align}
& \Rightarrow \int{f(x)dx}=\int{\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)dx} \\
& \Rightarrow \int{f(x)dx}=\int{3\sqrt{x}dx+\int{\dfrac{1}{\sqrt{x}}dx}}....(2) \\
\end{align}\]
Let us assume A is equal to \[\int{3\sqrt{x}dx}\].
\[\Rightarrow A=\int{3\sqrt{x}dx}....(3)\]
Let us assume B is equal to \[\int{\dfrac{1}{\sqrt{x}}dx}\].
\[\Rightarrow B=\int{\dfrac{1}{\sqrt{x}}dx}.......(4)\]
Now let us substitute equation (3) and equation (4) in equation (2).
\[\Rightarrow \int{f(x)dx}=A+B.....(5)\]
We know that \[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\]. By using this formula, we should find the value of A.
\[\begin{align}
& \Rightarrow A=\int{3\sqrt{x}dx} \\
& \Rightarrow A=3\int{\sqrt{x}dx} \\
& \Rightarrow A=3\int{{{x}^{\dfrac{1}{2}}}dx} \\
& \Rightarrow A=3\left( \dfrac{{{x}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1} \right) \\
& \Rightarrow A=3\left( \dfrac{{{x}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right) \\
& \Rightarrow A=3\left( \dfrac{2}{3} \right){{x}^{\dfrac{3}{2}}} \\
& \Rightarrow A=2{{x}^{\dfrac{3}{2}}}.....(6) \\
\end{align}\]
We should also find the value of B.
\[\begin{align}
& \Rightarrow B=\int{\dfrac{1}{\sqrt{x}}dx} \\
& \Rightarrow B=\int{{{x}^{\dfrac{-1}{2}}}dx} \\
& \Rightarrow B=\dfrac{{{x}^{\dfrac{-1}{2}+1}}}{\dfrac{-1}{2}+1} \\
& \Rightarrow B=\dfrac{{{x}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \\
& \Rightarrow B=2{{x}^{\dfrac{1}{2}}}.......(7) \\
\end{align}\]
Now let us substitute equation (6) and equation (7) in equation (5), then we get
\[\begin{align}
& \Rightarrow \int{f(x)dx}=2{{x}^{\dfrac{3}{2}}}+2{{x}^{\dfrac{1}{2}}} \\
& \Rightarrow \int{f(x)dx}=2{{x}^{\dfrac{1}{2}}}\left( x+1 \right).....(8) \\
\end{align}\]
From equation (8), it is clear that the value of anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\] is equal to \[2{{x}^{\dfrac{1}{2}}}\left( x+1 \right)\].
Note:
Some students may have a misconception that the anti-derivative of a function f(x) is equal to \[\dfrac{d}{dx}f(x)\]. If this misconception is followed, then we cannot get the correct value of anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]. So, it is clear that this misconception should be avoided by students. This misconception will lead to the wrong solution.
Complete step by step answer:
Before solving the problem, we should know that the anti-derivative of a function f(x) is defined as the integral of the function f(x).
So, it is clear that the anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\] is equal to the integral of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\].
Let us assume
\[f(x)=\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)....(1)\]
So, now we should find the integral of f(x).
\[\begin{align}
& \Rightarrow \int{f(x)dx}=\int{\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)dx} \\
& \Rightarrow \int{f(x)dx}=\int{3\sqrt{x}dx+\int{\dfrac{1}{\sqrt{x}}dx}}....(2) \\
\end{align}\]
Let us assume A is equal to \[\int{3\sqrt{x}dx}\].
\[\Rightarrow A=\int{3\sqrt{x}dx}....(3)\]
Let us assume B is equal to \[\int{\dfrac{1}{\sqrt{x}}dx}\].
\[\Rightarrow B=\int{\dfrac{1}{\sqrt{x}}dx}.......(4)\]
Now let us substitute equation (3) and equation (4) in equation (2).
\[\Rightarrow \int{f(x)dx}=A+B.....(5)\]
We know that \[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\]. By using this formula, we should find the value of A.
\[\begin{align}
& \Rightarrow A=\int{3\sqrt{x}dx} \\
& \Rightarrow A=3\int{\sqrt{x}dx} \\
& \Rightarrow A=3\int{{{x}^{\dfrac{1}{2}}}dx} \\
& \Rightarrow A=3\left( \dfrac{{{x}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1} \right) \\
& \Rightarrow A=3\left( \dfrac{{{x}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right) \\
& \Rightarrow A=3\left( \dfrac{2}{3} \right){{x}^{\dfrac{3}{2}}} \\
& \Rightarrow A=2{{x}^{\dfrac{3}{2}}}.....(6) \\
\end{align}\]
We should also find the value of B.
\[\begin{align}
& \Rightarrow B=\int{\dfrac{1}{\sqrt{x}}dx} \\
& \Rightarrow B=\int{{{x}^{\dfrac{-1}{2}}}dx} \\
& \Rightarrow B=\dfrac{{{x}^{\dfrac{-1}{2}+1}}}{\dfrac{-1}{2}+1} \\
& \Rightarrow B=\dfrac{{{x}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \\
& \Rightarrow B=2{{x}^{\dfrac{1}{2}}}.......(7) \\
\end{align}\]
Now let us substitute equation (6) and equation (7) in equation (5), then we get
\[\begin{align}
& \Rightarrow \int{f(x)dx}=2{{x}^{\dfrac{3}{2}}}+2{{x}^{\dfrac{1}{2}}} \\
& \Rightarrow \int{f(x)dx}=2{{x}^{\dfrac{1}{2}}}\left( x+1 \right).....(8) \\
\end{align}\]
From equation (8), it is clear that the value of anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\] is equal to \[2{{x}^{\dfrac{1}{2}}}\left( x+1 \right)\].
Note:
Some students may have a misconception that the anti-derivative of a function f(x) is equal to \[\dfrac{d}{dx}f(x)\]. If this misconception is followed, then we cannot get the correct value of anti-derivative of \[\left( 3\sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]. So, it is clear that this misconception should be avoided by students. This misconception will lead to the wrong solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

