
How do you write $\tan \left( 2x \right)$ in terms of $\sin x$?
Answer
540.9k+ views
Hint: To solve the above question, we need to use the trigonometric identity of the tangent function given by $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$. Then, since according to the above question we have to write $\tan \left( 2x \right)$ in terms of $\sin x$, we will substitute $\tan x=\dfrac{\sin x}{\cos x}$ into the identity $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$ so as to get $\tan 2x=\dfrac{2\sin x\cos x}{{{\cos }^{2}}x-{{\sin }^{2}}x}$. Then we have to substitute the trigonometric identity ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ into the numerator and the trigonometric identity $\cos x=\sqrt{1-{{\sin }^{2}}x}$ into the denominator, the expression for $\tan \left( 2x \right)$ will get simplified and we will obtain the value of $\tan \left( 2x \right)$ in terms of $\sin x$.
Complete step by step answer:
We know that the trigonometric identity for $\tan \left( 2x \right)$ is given by
$\Rightarrow \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$
Now, we know that $\tan x=\dfrac{\sin x}{\cos x}$. On substituting this in the above identity, we get
\[\begin{align}
& \Rightarrow \tan 2x=\dfrac{2\dfrac{\sin x}{\cos x}}{1-{{\left( \dfrac{\sin x}{\cos x} \right)}^{2}}} \\
& \Rightarrow \tan 2x=\dfrac{2\dfrac{\sin x}{\cos x}}{\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\cos }^{2}}x}} \\
& \Rightarrow \tan 2x=\dfrac{2\dfrac{\sin x}{\cos x}{{\cos }^{2}}x}{{{\cos }^{2}}x-{{\sin }^{2}}x} \\
\end{align}\]
On simplifying the numerator, we get
\[\Rightarrow \tan 2x=\dfrac{2\sin x\cos x}{{{\cos }^{2}}x-{{\sin }^{2}}x}........\left( i \right)\]
Now, we know the trigonometric identity which is given by
$\Rightarrow {{\cos }^{2}}x+{{\sin }^{2}}x=1$
On subtracting ${{\sin }^{2}}x$ from both the sides of the above equation, we get
$\begin{align}
& \Rightarrow {{\cos }^{2}}x+{{\sin }^{2}}x-{{\sin }^{2}}x=1-{{\sin }^{2}}x \\
& \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x........\left( ii \right) \\
\end{align}$
Now, on taking the square root on both the sides of the above equation, we get
$\Rightarrow \cos x=\sqrt{1-{{\sin }^{2}}x}........\left( iii \right)$
Now, we substitute the above equations (ii) and (iii) into the identity (i) to get
\[\begin{align}
& \Rightarrow \tan 2x=\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{1-{{\sin }^{2}}x-{{\sin }^{2}}x} \\
& \Rightarrow \tan 2x=\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{1-2{{\sin }^{2}}x} \\
\end{align}\]
Hence, we have finally obtained $\tan \left( 2x \right)$ in terms of $\sin x$ as \[\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{1-2{{\sin }^{2}}x}\].
Note: For solving these types of questions, we must remember different trigonometric identities, the double angle formulae for the tangent, sine and cosine functions. We can also write $\tan \left( 2x \right)$ as $\dfrac{\sin \left( 2x \right)}{\cos \left( 2x \right)}$ and then substitute the identity $\sin 2x=2\sin x\cos x$ into the numerator and the identity $\cos 2x=1-2{{\sin }^{2}}x$ into the denominator to directly get $\tan \left( 2x \right)=\dfrac{2\sin x\cos x}{1-2{{\sin }^{2}}x}$. Then on substituting $\cos x=\sqrt{1-{{\sin }^{2}}x}$ into the numerator, we will obtain the final expression.
Complete step by step answer:
We know that the trigonometric identity for $\tan \left( 2x \right)$ is given by
$\Rightarrow \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$
Now, we know that $\tan x=\dfrac{\sin x}{\cos x}$. On substituting this in the above identity, we get
\[\begin{align}
& \Rightarrow \tan 2x=\dfrac{2\dfrac{\sin x}{\cos x}}{1-{{\left( \dfrac{\sin x}{\cos x} \right)}^{2}}} \\
& \Rightarrow \tan 2x=\dfrac{2\dfrac{\sin x}{\cos x}}{\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\cos }^{2}}x}} \\
& \Rightarrow \tan 2x=\dfrac{2\dfrac{\sin x}{\cos x}{{\cos }^{2}}x}{{{\cos }^{2}}x-{{\sin }^{2}}x} \\
\end{align}\]
On simplifying the numerator, we get
\[\Rightarrow \tan 2x=\dfrac{2\sin x\cos x}{{{\cos }^{2}}x-{{\sin }^{2}}x}........\left( i \right)\]
Now, we know the trigonometric identity which is given by
$\Rightarrow {{\cos }^{2}}x+{{\sin }^{2}}x=1$
On subtracting ${{\sin }^{2}}x$ from both the sides of the above equation, we get
$\begin{align}
& \Rightarrow {{\cos }^{2}}x+{{\sin }^{2}}x-{{\sin }^{2}}x=1-{{\sin }^{2}}x \\
& \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x........\left( ii \right) \\
\end{align}$
Now, on taking the square root on both the sides of the above equation, we get
$\Rightarrow \cos x=\sqrt{1-{{\sin }^{2}}x}........\left( iii \right)$
Now, we substitute the above equations (ii) and (iii) into the identity (i) to get
\[\begin{align}
& \Rightarrow \tan 2x=\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{1-{{\sin }^{2}}x-{{\sin }^{2}}x} \\
& \Rightarrow \tan 2x=\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{1-2{{\sin }^{2}}x} \\
\end{align}\]
Hence, we have finally obtained $\tan \left( 2x \right)$ in terms of $\sin x$ as \[\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{1-2{{\sin }^{2}}x}\].
Note: For solving these types of questions, we must remember different trigonometric identities, the double angle formulae for the tangent, sine and cosine functions. We can also write $\tan \left( 2x \right)$ as $\dfrac{\sin \left( 2x \right)}{\cos \left( 2x \right)}$ and then substitute the identity $\sin 2x=2\sin x\cos x$ into the numerator and the identity $\cos 2x=1-2{{\sin }^{2}}x$ into the denominator to directly get $\tan \left( 2x \right)=\dfrac{2\sin x\cos x}{1-2{{\sin }^{2}}x}$. Then on substituting $\cos x=\sqrt{1-{{\sin }^{2}}x}$ into the numerator, we will obtain the final expression.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

