Answer
Verified
495k+ views
Hint- This question can be solved by writing all composite numbers on the higher side i.e. from $90$ onwards.
In order to write seven consecutive composite numbers between $1$ and $100$ we have to consider the numbers of the higher side in counting because if we take smaller numbers there is more probability of prime numbers.
For example: If we start from first prime number i.e.
$2$ and $3$ are prime numbers followed by $5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97$.
When we see these numbers we get, composite numbers
$
4,6,8,9,10,12,14,15,16,18,20,22,24,25,26,27,28,30,32,33,34,35,36,38,39,40,42,44,45,46,48,49,50, \\
51,52,54,55,56,57,58,60,62,63,64,65,66,68,69,70,72,74,75,76,77,78,80,81,82,84,85,86,87,88,90, \\
91,92,93,94,95,96,98,99. \\
$
On seeing these numbers we find that we are not able to get $5$ consecutive composite numbers from $4$ to $88$ . And when we start from $90$ to $96$ we get seven consecutive composite numbers.
Note- Whenever we face such types of questions the key concept is that we have to locate composite numbers in the top series i.e. $90$ onwards . Like we did in this question. We can’t find consecutive seven composite numbers from $4$ to $88$.
In order to write seven consecutive composite numbers between $1$ and $100$ we have to consider the numbers of the higher side in counting because if we take smaller numbers there is more probability of prime numbers.
For example: If we start from first prime number i.e.
$2$ and $3$ are prime numbers followed by $5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97$.
When we see these numbers we get, composite numbers
$
4,6,8,9,10,12,14,15,16,18,20,22,24,25,26,27,28,30,32,33,34,35,36,38,39,40,42,44,45,46,48,49,50, \\
51,52,54,55,56,57,58,60,62,63,64,65,66,68,69,70,72,74,75,76,77,78,80,81,82,84,85,86,87,88,90, \\
91,92,93,94,95,96,98,99. \\
$
On seeing these numbers we find that we are not able to get $5$ consecutive composite numbers from $4$ to $88$ . And when we start from $90$ to $96$ we get seven consecutive composite numbers.
Note- Whenever we face such types of questions the key concept is that we have to locate composite numbers in the top series i.e. $90$ onwards . Like we did in this question. We can’t find consecutive seven composite numbers from $4$ to $88$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE