
Write \[\sec x + \tan x\] in terms of a tangent function.
Answer
480.3k+ views
Hint: We will first convert the given expression in terms of sine and cosine function. Then we will use the concept of half angle and the basic formula for \[{\left( {a + b} \right)^2}\]. Further we will simplify by using the formula of \[\left( {{a^2} - {b^2}} \right)\]. Then in order to convert the resulting expression into tangent function we will divide by cosine function and then try to convert the given expression into the formula for \[\tan \left( {a + b} \right)\].
Complete step-by-step answer:
Given expression;
\[\sec x + \tan x\]
Now we will convert the given expression in terms of sine and cosine function.
We know,
\[\sec x = \dfrac{1}{{\cos x}}\] and \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
So, the given expression becomes;
\[ = \dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}\]
Now we will add the two fractions using \[\cos x\] as the LCM. So, we get;
\[ = \dfrac{{1 + \sin x}}{{\cos x}}\]
We know, \[\sin 2x = 2\sin x\cos x\]
So, \[\sin 2\left( {\dfrac{x}{2}} \right) = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)\]
Putting these values in the above expression we get,
\[ = \dfrac{{1 + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{\cos x}}\]
Now we know that, \[\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\]. So, we will use the in the denominator. So, we get
\[ = \dfrac{{1 + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}\]
Now we know that, \[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\], so we will replace \[1\] in the numerator using this formula. So, we get;
\[ = \dfrac{{{{\sin }^2}x + {{\cos }^2}x + 2\cos \dfrac{x}{2}\sin \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}\]
We can see that the numerator can be written as \[{\left( {a + b} \right)^2}\] and in the denominator we will use the formula; \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\], so, we will get;
\[ = \dfrac{{{{\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)}^2}}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}\]
Now we will cancel the common terms in the numerator and the denominator. We get,
\[ = \dfrac{{\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}\]
We have to get the result in terms of tangent function, so we will divide both the numerator and the denominator by \[\cos \dfrac{x}{2}\]. So, we get;
\[ = \dfrac{{\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} + \dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} - \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}\]
Now we will use the formula that; \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]. So, on further simplification we get,
\[ = \dfrac{{\tan \dfrac{x}{2} + 1}}{{1 - \tan \dfrac{x}{2}}}\]
Now we will replace \[1\], in the numerator by \[\tan \dfrac{\pi }{4}\] because \[\tan \dfrac{\pi }{4} = 1\].
\[ = \dfrac{{\tan \dfrac{x}{2} + \tan \dfrac{\pi }{4}}}{{1 - \tan \dfrac{x}{2}}}\]
Now we can write the denominator as \[\left( {1 - \tan \dfrac{x}{2}} \right) = \left( {1 - \tan \dfrac{\pi }{4}\tan \dfrac{x}{2}} \right)\]. So, we get;
\[ = \dfrac{{\tan \dfrac{x}{2} + \tan \dfrac{\pi }{4}}}{{1 - \tan \dfrac{\pi }{4}\tan \dfrac{x}{2}}}\]
As we can see that this is the formula for \[\tan \left( {a + b} \right)\], \[a = \dfrac{x}{2},b = \dfrac{\pi }{4}\]. So, using this we get;
\[ = \tan \left( {\dfrac{x}{2} + \dfrac{\pi }{4}} \right)\].
So, the correct answer is “\[ = \tan \left( {\dfrac{x}{2} + \dfrac{\pi }{4}} \right)\]”.
Note: One major problem the students face here is that they get confused whether \[\dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\] is \[\tan \left( {a + b} \right)\] or \[\tan \left( {a - b} \right)\]. So, we should note here that while writing the formula for \[\tan \left( {a + b} \right)\] we write plus in the numerator and minus in the denominator. While writing the formula for \[\tan \left( {a - b} \right)\] we write minus in the numerator and plus in the denominator.
Complete step-by-step answer:
Given expression;
\[\sec x + \tan x\]
Now we will convert the given expression in terms of sine and cosine function.
We know,
\[\sec x = \dfrac{1}{{\cos x}}\] and \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
So, the given expression becomes;
\[ = \dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}\]
Now we will add the two fractions using \[\cos x\] as the LCM. So, we get;
\[ = \dfrac{{1 + \sin x}}{{\cos x}}\]
We know, \[\sin 2x = 2\sin x\cos x\]
So, \[\sin 2\left( {\dfrac{x}{2}} \right) = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)\]
Putting these values in the above expression we get,
\[ = \dfrac{{1 + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{\cos x}}\]
Now we know that, \[\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\]. So, we will use the in the denominator. So, we get
\[ = \dfrac{{1 + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}\]
Now we know that, \[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\], so we will replace \[1\] in the numerator using this formula. So, we get;
\[ = \dfrac{{{{\sin }^2}x + {{\cos }^2}x + 2\cos \dfrac{x}{2}\sin \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}\]
We can see that the numerator can be written as \[{\left( {a + b} \right)^2}\] and in the denominator we will use the formula; \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\], so, we will get;
\[ = \dfrac{{{{\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)}^2}}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}\]
Now we will cancel the common terms in the numerator and the denominator. We get,
\[ = \dfrac{{\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}\]
We have to get the result in terms of tangent function, so we will divide both the numerator and the denominator by \[\cos \dfrac{x}{2}\]. So, we get;
\[ = \dfrac{{\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} + \dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} - \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}\]
Now we will use the formula that; \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]. So, on further simplification we get,
\[ = \dfrac{{\tan \dfrac{x}{2} + 1}}{{1 - \tan \dfrac{x}{2}}}\]
Now we will replace \[1\], in the numerator by \[\tan \dfrac{\pi }{4}\] because \[\tan \dfrac{\pi }{4} = 1\].
\[ = \dfrac{{\tan \dfrac{x}{2} + \tan \dfrac{\pi }{4}}}{{1 - \tan \dfrac{x}{2}}}\]
Now we can write the denominator as \[\left( {1 - \tan \dfrac{x}{2}} \right) = \left( {1 - \tan \dfrac{\pi }{4}\tan \dfrac{x}{2}} \right)\]. So, we get;
\[ = \dfrac{{\tan \dfrac{x}{2} + \tan \dfrac{\pi }{4}}}{{1 - \tan \dfrac{\pi }{4}\tan \dfrac{x}{2}}}\]
As we can see that this is the formula for \[\tan \left( {a + b} \right)\], \[a = \dfrac{x}{2},b = \dfrac{\pi }{4}\]. So, using this we get;
\[ = \tan \left( {\dfrac{x}{2} + \dfrac{\pi }{4}} \right)\].
So, the correct answer is “\[ = \tan \left( {\dfrac{x}{2} + \dfrac{\pi }{4}} \right)\]”.
Note: One major problem the students face here is that they get confused whether \[\dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\] is \[\tan \left( {a + b} \right)\] or \[\tan \left( {a - b} \right)\]. So, we should note here that while writing the formula for \[\tan \left( {a + b} \right)\] we write plus in the numerator and minus in the denominator. While writing the formula for \[\tan \left( {a - b} \right)\] we write minus in the numerator and plus in the denominator.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

