
How do you write ${{d}^{2}}-18d+80$ in factored form?
Answer
540.6k+ views
Hint: We will factor the given quadratic equation by using the splitting the middle term method. We will split the middle term of the equation $a{{x}^{2}}+bx+c=0$ such that the product of two numbers is equal to $a\times c$ and the sum of those two numbers is equal to $b$.
Complete step-by-step solution:
We have been given an equation ${{d}^{2}}-18d+80$.
We have to write the given equation in factored form.
Now, we will use the split middle term method. We have to find two numbers such as the product of two numbers is equal to $a\times c=1\times 80=80$ and their sum is equal to $b=18$.
So we will use two numbers as 10 and 8.
So splitting the middle term we will get
$\Rightarrow {{d}^{2}}-\left( 10d+8d \right)+80$
Now, simplifying the above obtained equation we will get
$\Rightarrow {{d}^{2}}-10d-8d+80$
Now, taking the common terms out we will get
$\Rightarrow d\left( d-10 \right)-8\left( d-10 \right)$
Now, again taking common factors out we will get
$\Rightarrow \left( d-10 \right)\left( d-8 \right)$
Hence we get the factors of the given equation as $\left( d-10 \right)\left( d-8 \right)$.
Note: Here in this question we use the split middle term method as it is a simple question. We can also use other methods like quadratic formula, completing the square method also to solve the quadratic equations. Also we can find the values of x by equating each factor to zero and by solving the obtained equations.
Complete step-by-step solution:
We have been given an equation ${{d}^{2}}-18d+80$.
We have to write the given equation in factored form.
Now, we will use the split middle term method. We have to find two numbers such as the product of two numbers is equal to $a\times c=1\times 80=80$ and their sum is equal to $b=18$.
So we will use two numbers as 10 and 8.
So splitting the middle term we will get
$\Rightarrow {{d}^{2}}-\left( 10d+8d \right)+80$
Now, simplifying the above obtained equation we will get
$\Rightarrow {{d}^{2}}-10d-8d+80$
Now, taking the common terms out we will get
$\Rightarrow d\left( d-10 \right)-8\left( d-10 \right)$
Now, again taking common factors out we will get
$\Rightarrow \left( d-10 \right)\left( d-8 \right)$
Hence we get the factors of the given equation as $\left( d-10 \right)\left( d-8 \right)$.
Note: Here in this question we use the split middle term method as it is a simple question. We can also use other methods like quadratic formula, completing the square method also to solve the quadratic equations. Also we can find the values of x by equating each factor to zero and by solving the obtained equations.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

