Answer
Verified
475.8k+ views
Hint: In the above given question we are asked to write the additive inverse and multiplicative inverse of a rational number. For additive inverse, the sum of rational number and its inverse should be equal to zero. For multiplicative inverse, the multiplication of a rational number with its reciprocal should be equal to 1.
Complete step-by-step answer:
Let us assume a rational number be $a$.
Now, we know that the additive inverse of a number $a$ is the number that, when added to $a$, yields zero
$ \Rightarrow a + ( - a) = 0$
Therefore, the additive inverse of $a$ is $ - a$.
Also, we know that the reciprocal of a number or the multiplicative inverse obtained is such that when it is multiplied with the original number the value equals 1.
$ \Rightarrow a \times \dfrac{1}{a} = 1$
Therefore, the multiplicative inverse of $a$ is $\dfrac{1}{a}$ .
Hence, the additive inverse of $a$ is $ - a$ and the multiplicative inverse of $a$ is $\dfrac{1}{a}$.
Note: When we face such types of problems, we must have adequate knowledge of rational numbers and its properties. Here, in this question, we have assumed a rational number and with the aid of the properties of additive inverse and multiplicative inverse the required solution can be obtained.
Complete step-by-step answer:
Let us assume a rational number be $a$.
Now, we know that the additive inverse of a number $a$ is the number that, when added to $a$, yields zero
$ \Rightarrow a + ( - a) = 0$
Therefore, the additive inverse of $a$ is $ - a$.
Also, we know that the reciprocal of a number or the multiplicative inverse obtained is such that when it is multiplied with the original number the value equals 1.
$ \Rightarrow a \times \dfrac{1}{a} = 1$
Therefore, the multiplicative inverse of $a$ is $\dfrac{1}{a}$ .
Hence, the additive inverse of $a$ is $ - a$ and the multiplicative inverse of $a$ is $\dfrac{1}{a}$.
Note: When we face such types of problems, we must have adequate knowledge of rational numbers and its properties. Here, in this question, we have assumed a rational number and with the aid of the properties of additive inverse and multiplicative inverse the required solution can be obtained.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE